MOLECULAR DYNAMICS SIMULATION ON THERMAL CONDUCTIVITY OF ONE DIMENISON NANOMATERIALS
GAO Yufei, MENG Qingyuan
School of Astronautics, Harbin Institute of Technology, Harbin 150001
Cite this article:
GAO Yufei MENG Qingyuan. MOLECULAR DYNAMICS SIMULATION ON THERMAL CONDUCTIVITY OF ONE DIMENISON NANOMATERIALS. Acta Metall Sin, 2010, 46(10): 1244-1249.
Abstract The Non–equilibrium molecular dynamics (NEMD) simulation method which is based on the linear response theory is applied to simulate the thermal conduction process of C, BN and SiC nanotubes. The three–body Tersoff potential is used to simulate the interactions among atoms. The effects of axial length, temperature and tensile strain on the axial thermal conductivity of the three kinds of nanotubes are investigated, and their thermal conductivities are compared and analyzed. The simulation results show that the axial thermal conductivity increases as the axial length increases, and exhibits a relationship k ∝ Lα that is in agreement with the solution of Boltzmann-Peierls phonon transport equation (B–P equation). It is found that the thermal conductivity of nanotube decreases with the increase of temperature. As the tensile strain increases, the thermal conductivity of nanotubes show an slight increase first, and then decreases. But, the corresponding tensile strains at which the tendency of thermal conductivity of the three nanotubes changes are different. Under the same conditions, the sequence of thermal conductivity from the biggest to the smallest is in the order of carbonanotues, boron nitride naotubes and carbon silicon nanotues.
[1] Mensah S Y, Allotey F K A, Nkrumah G, Mensah N G. Physica E,2004;23:152-158
[2] Chang C W, Han W Q, Zettl A. Appl Phys Lett, 2005,23(5):1883-1886
[3] Mingo N, Broido D A. Nano Lett,2005;5(7):1221-1225
[4] Hou Q W, Cao B Y, Guo Z Y. Journal of Engineering Thermophysics,2009;30(7):1207-1209[侯泉文,曹炳阳,过增元.工程热物理学报,2009;30(7):1207-1209]
[5] Pop E, Mann D, Wang Q, Goodson K, Dai H J. Nano Lett,2006;6(1):96-100
[6] Yu C, Shi L, Yao Z, Li D Y, Majumdar A. Nano Lett,2005;5(9):1842-1846
[7] Fujii M, Zhang X, Xie H Q, Ago H, Takahashi K, Ikuta T, Abe H, Shimizu T. Phys Rev Lett,2005;95(6):065502-1-4
[8] Kim P, Shi L, Majumdar A, Mceuen P L. Phys Rev Lett,2001;8721(21):215502-1-4
[9] Wang Z L, Tang D W, Li X B, Zheng X H, Zhang W G, Zheng L X, Zhu Y T, Jin A Z, Yang H F, Gu C Z. Appl Phys Lett,2007;91(12):123119-1-3
[10] Zhang G, Li B W. J Phys Chem B,2005;109(50):23823-23826
[11] Nanda J, Maranville C, Bollin S C, Sawall D, Ohtani H, Remillard J T, Ginder J M. J Phys Chem C,2008;112(3):654-658
[12] Mohammad A, Elena A, Michael C B, Florian M P. Nanotechnology,2009;20:115704-1-8
[13] Florian M P. J Chem Phys,1997;106(14):6082-6085
[14] Tersoff J. Phys Rev B,1988;37(12):6991-7000
[15] Karsten A, Wolfhard M. Comput Mater Sci,1998;10(1):111-115
[16] Hernandez E, Goze C, Bernier P, Rubio A. Phys Rev Lett,1998;80(20):4502-4505
[17] CAO B Y. Chinese Journal Of Computational Physics,2007;24(4):463-466[曹炳阳.计算物理,2007;24(4):463-466]
[18] Schelling P K, Phillpot S R, Keblinski P. Phys Rev B,2002;65(14): 144306-1-12
[19] Huang K. Solid Physics. Beijing:Higher Education Press,1988:145[黄昆著.固体物理学.北京:高等教育出版社,1988:145]
[20] Tian S G, Shen H J. Journal of Materials Science &Engineering,2009;27(2):213-215[田少岗,沈海军.材料科学与工程学报,2009;27(2):213-215]