Investigations on the Thermal Conductivity of Micro-Scale Cu-Sn Intermetallic Compounds Using Femtosecond Laser Time-Domain Thermoreflectance System
ZHOU Lijun1,2, WEI Song1,2,3, GUO Jingdong1,2(), SUN Fangyuan4(), WANG Xinwei5, TANG Dawei5
1.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China 3.School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China 4.School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China 5.School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China
Cite this article:
ZHOU Lijun, WEI Song, GUO Jingdong, SUN Fangyuan, WANG Xinwei, TANG Dawei. Investigations on the Thermal Conductivity of Micro-Scale Cu-Sn Intermetallic Compounds Using Femtosecond Laser Time-Domain Thermoreflectance System. Acta Metall Sin, 2022, 58(12): 1645-1654.
An accurate temperature analysis of electronic packaging requires an understanding of the thermal-transport parameters of the material. However, studies on the thermal conductivity of intermetallic compounds (IMCs) in micro-interconnect solder joints are scarce, particularly common IMCs forming in Cu-Sn systems, which seriously affect the precise prediction of the temperature field and thermal stress for electronic packaging structures. This work proposes a novel method to quantitatively measure the thermophysical parameters of Cu-Sn IMCs based on the dual-wavelength femtosecond laser time-domain thermoreflectance (TDTR) system. Cu-Sn diffusion couple samples were prepared using a reflow and aging process. Two layers of Cu6Sn5 and Cu3Sn IMCs formed at the interface with micron thickness, and the (001) crystal plane of Cu6Sn5 was the preferred orientation. The sensitivity of the experimental parameters to the measurement parameters affects the fitting accuracy. Therefore, before testing, the effects of the aluminum transducer thickness and pump laser modulation frequency on the phase signal sensitivity in the thermal conductivity measurements of Cu6Sn5 and Cu3Sn were analyzed to help select the specific experimental parameters. After testing, the thermal conductivities of Cu6Sn5 and Cu3Sn were 47.4 and 87.6 W/(m·K), respectively, which are slightly higher than the previous results because of the microstructure discrepancy caused by different material preparation techniques. Finally, the influence of the pump laser diameter, aluminum transducer thickness, and material specific heat on the measurement error of thermal conductivity for Cu6Sn5 and Cu3Sn was examined. The test errors of the Cu6Sn5 and Cu3Sn thermal conductivity were -6.8%~4.6% and -7.1%~4.4%, respectively. Overall, the TDTR technology can evaluate the thermal-transport characteristics of micron-scale intermetallic compounds in electronic packaging and guide the thermal design and reliability evaluations of electronic components.
Fund: National Natural Science Foundation of China(51971231);National Natural Science Foundation of China(52105327);National Natural Science Foundation of China(51720105007);National Key Scientific Instrument and Equipment Development Projects of China(2013YQ120355);Fundamental Research Funds for the Central Universities(FRF-BD-20-09A)
About author: SUN Fangyuan, associate professor, Tel: 15011316319, E-mail: sunfangyuan@ustb.edu.cn GUO Jingdong, professor, Tel: 13066761355, E-mail: jdguo@imr.ac.cn
Fig.1 Schematic of femtosecond laser time-domain thermoreflectance (TDTR) system
Fig.2 Microstructure analyses of the interface for Cu-Sn diffusion couple specimens (a) SEM image of microstructure (b) EDS element maps of square region in Fig.2a (c) XRD spectrum of Cu-Sn specimen
Fig.3 Orientation distributions of Cu6Sn5 grains (a) band contrast image (b) Euler color image (?1, Φ, ?2—Euler angles) (c) orientation color image perpendicular to RD-TD plane (RD—rolling direction, TD—transverse direction) (d) (001) pole figure (e) (100) pole figure (f) (301) pole figure
Fig.4 Orientation distributions of Cu3Sngrains (a) band contrast image (b) Euler color image (c) orientation color image perpendicular to RD-TD plane (d) (001) pole figure (e) (100) pole figure (f) (301) pole figure
Fig.5 Influences of aluminum transducer thickness (a, b) and pump laser modulation frequency (c, d) on phase signal sensitivity in thermal conductivity measurement for Cu6Sn5 (a, c) and Cu3Sn (b, d)
Fig.6 Experimental data of thermal conductivity measurement and the fitting curves of phase angle signal (a, b) and amplitude signal (c, d) for Cu6Sn5 (a, c) and Cu3Sn (b, d)
Fig.7 Influences of pump laser diameter (Dpump) (a), aluminum transducer thickness (dAl) (b), and material specific heat (cp ) (c) on thermal conductivity measurement for Cu6Sn5 and Cu3Sn
Item
Raw data
4.2% (cp )
-2.1% (cp )
1 nm (dAl)
-1 nm (dAl)
1 μm (Dpump)
-1 μm (Dpump)
Error
±0.6%
-4.0%
2.1%
1.5%
-1.8%
0.4%
-0.4%
1
47.0
45.1
48.0
47.7
46.3
47.2
46.8
2
47.7
45.8
48.7
48.4
46.9
47.8
47.5
3
47.5
45.7
48.5
48.2
46.8
47.7
47.4
Mean
47.4
45.5
48.4
48.1
46.7
47.6
47.2
Table 1 Statistics of calculated results of thermal conductivity and corresponding error of Cu6Sn5
Item
Raw data
4.1% (cp )
-1.2% (cp )
1 nm (dAl)
-1 nm (dAl)
1 μm (Dpump)
-1 μm (Dpump)
Error
±1.4%
-4.0%
1.3%
1.5%
-1.5%
0.2%
-0.2%
1
89.3
85.7
90.4
90.7
88.0
89.5
89.1
2
87.1
83.6
88.2
88.4
85.8
87.3
86.9
3
86.5
83.0
87.5
87.8
85.2
86.7
86.3
Mean
87.6
84.1
88.7
89.0
86.3
87.8
87.4
Table 2 Statistics of calculated results of thermal conductivity and corresponding error of Cu3Sn
1
Braun T, Becker K F, Töpper M, et al. Fan-out wafer and panel level packaging—A platform for 3D integration [A]. 5th IEEE Electron Devices Technology and Manufacturing Conference [C]. Chengdu: IEEE, 2021: 1
2
Liu J H, Zhao H Y, Li Z L, et al. Microstructures and mechanical properties of Cu/Sn/Cu structure ultrasonic-tlp joint [J]. Acta Metall. Sin., 2017, 53: 227
Lancaster A, Keswani M. Integrated circuit packaging review with an emphasis on 3D packaging [J]. Integration, 2018, 60: 204
doi: 10.1016/j.vlsi.2017.09.008
4
Lable R, Ruythooren W, Baert K, et al. Resistance to electromigration of purely intermetallic micro-bump interconnections for 3D-device stacking [A]. 2008 International Interconnect Technology Conference [C]. Burlingame: IEEE, 2008: 19
5
Oprins H, Cherman V, Beyne E, et al. Thermal performance comparison of advanced 3D packaging concepts for logic and memory integration in mobile cooling conditions [A]. 17th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems [C]. San Diego: IEEE, 2018: 318
6
Oprins H, Beyne E. Thermal analysis of a 3D flip-chip fan-out wafer level package (fcFOWLP) for high bandwidth 3D integration [A]. 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems [C]. Las Vegas: IEEE, 2019: 1234
7
Goodson K E, Flik M I. Solid layer thermal-conductivity measurement techniques [J]. Appl. Mech. Rev., 1994, 47: 101
doi: 10.1115/1.3111073
8
Mcconnell A D, Goodson K E. Thermal conduction in silicon micro- and nanostructures [J]. Annu. Rev. Heat Transfer, 2005, 14: 129
doi: 10.1615/AnnualRevHeatTransfer.v14.120
9
Nishi T, Shibata H, Waseda Y, et al. Thermal conductivities of molten iron, cobalt, and nickel by laser flash method [J]. Metall. Mater. Trans., 2003, 34A: 2801
10
Kim J H, Feldman A, Novotny D. Application of the three omega thermal conductivity measurement method to a film on a substrate of finite thickness [J]. J. Appl. Phys., 1999, 86: 3959
doi: 10.1063/1.371314
11
Al-Ajlan S A. Measurements of thermal properties of insulation materials by using transient plane source technique [J]. Appl. Therm. Eng., 2006, 26: 2184
doi: 10.1016/j.applthermaleng.2006.04.006
12
Bentz D P. Transient plane source measurements of the thermal properties of hydrating cement pastes [J]. Mater. Struct., 2007, 40: 1073
doi: 10.1617/s11527-006-9206-9
13
Ho C Y, Bogaard R H, Gibson C C. Thermophysical and mechanical properties of structural composites and alloys [J]. High Temp.-High Press., 1998, 30: 277
doi: 10.1068/htec178
14
Frederikse H P R, Fields R J, Feldman A. Thermal and electrical properties of copper-tin and nickel-tin intermetallics [J]. J. Appl. Phys., 1992, 72: 2879
doi: 10.1063/1.351487
15
Papadogiannis N A, Moustaïzis S D, Girardeau-Montaut J P. Electron relaxation phenomena on a copper surface via nonlinear ultrashort single-photon photoelectric emission [J]. J. Phys., 1997, 30D: 2389
16
Qiu T Q, Tien C L. Heat transfer mechanisms during short-pulse laser heating of metals [J]. J. Heat Transfer, 1993, 115: 835
doi: 10.1115/1.2911377
17
Cahill D G, Goodson K, Majumdar A. Thermometry and thermal transport in micro/nanoscale solid-state devices and structures [J]. J. Heat Transfer, 2002, 124: 223
doi: 10.1115/1.1454111
18
Capinski W S, Maris H J, Ruf T, et al. Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique [J]. Phys. Rev., 1999, 59B: 8105
19
Stoner R J, Maris H J. Kapitza conductance and heat flow between solids at temperatures from 50 to 300 K [J]. Phys. Rev., 1993, 48B: 16373
20
Losego M D, Grady M E, Sottos N R, et al. Effects of chemical bonding on heat transport across interfaces [J]. Nat. Mater., 2012, 11: 502
doi: 10.1038/nmat3303
pmid: 22522593
21
Sun F Y, Zhang T, Jobbins M M, et al. Molecular bridge enables anomalous enhancement in thermal transport across hard-soft material interfaces [J]. Adv. Mater., 2014, 26: 6093
doi: 10.1002/adma.201400954
22
Park M S, Gibbons S L, Arróyave R. Phase-field simulations of intermetallic compound growth in Cu/Sn/Cu sandwich structure under transient liquid phase bonding conditions [J]. Acta Mater., 2012, 60: 6278
doi: 10.1016/j.actamat.2012.07.063
23
Lee J B, Hwang H Y, Rhee M W. Reliability investigation of Cu/in TLP bonding [J]. J. Electron. Mater., 2015, 44: 435
doi: 10.1007/s11664-014-3373-1
24
Li J F, Agyakwa P A, Johnson C M. Kinetics of Ag3Sn growth in Ag-Sn-Ag system during transient liquid phase soldering process [J]. Acta Mater., 2010, 58: 3429
doi: 10.1016/j.actamat.2010.02.018
25
Zhang W, Ruythooren W. Study of the Au/In reaction for transient liquid-phase bonding and 3D chip stacking [J]. J. Electron. Mater., 2008, 37: 1095
doi: 10.1007/s11664-008-0487-3
26
Yu C C, Su P C, Bai S J, et al. Nickel-tin solid-liquid inter-diffusion bonding [J]. Int. J. Precis. Eng. Man., 2014, 15: 143
doi: 10.1007/s12541-013-0317-2
27
Sun F Y, Zhu J, Tang D W. Thermal conductivity measurement of liquids using femto-second laser pump-probe technique [J]. Chinese Sci. Bull., 2015, 60: 1320
doi: 10.1360/N972014-01282
Schmidt A J. Optical characterization of thermal transport from the nanoscale to the macroscale [D]. Cambridge: Massachusetts Institute of Technology, 2008
29
Li D, Franke P, Fürtauer S, et al. The Cu-Sn phase diagram part II: New thermodynamic assessment [J]. Intermetallics, 2013, 34: 148
doi: 10.1016/j.intermet.2012.10.010
30
Yang M. Interfacial reaction between tin-based solders and polycrystalline copper pad [D]. Harbin: Harbin Institute of Technology, 2012
杨明. 锡基钎料与多晶铜焊盘界面反应行为研究 [D]. 哈尔滨: 哈尔滨工业大学, 2012
31
Gundrum B C, Cahill D G, Averback R S. Thermal conductance of metal-metal interfaces [J]. Phys. Rev., 2005, 72B: 245426