|
|
Effect of High-Temperature Ageing on Microstructure and Mechanical Properties of Linear Friction Welded S31042 Steel Joint |
Yanmo LI1, Chenxi LIU1, Liming YU1, Huijun LI1, Zumin WANG1, Yongchang LIU1( ), Wenya LI2 |
1 State Key Laboratory of Hydraulic Engineering Simulation and Safety, School of Materials Science & Engineering, Tianjin University, Tianjin 300354, China; 2 Shaanxi Key Laboratory of Friction Welding Technologies, School of Materials Science & Engineering, Northwestern Polytechnical University, Xi'an 710072, China; |
|
Cite this article:
Yanmo LI, Chenxi LIU, Liming YU, Huijun LI, Zumin WANG, Yongchang LIU, Wenya LI. Effect of High-Temperature Ageing on Microstructure and Mechanical Properties of Linear Friction Welded S31042 Steel Joint. Acta Metall Sin, 2018, 54(7): 981-990.
|
Abstract S31042 steels with 25%Cr (mass fraction) and 20%Ni have been served as super-heaters and re-heaters in ultra-super critical (USC) plants, owing to their outstanding corrosion resistance and creep rupture strength. And the reliability of joints at high temperature has attracted much attention since the S31042 steels have been joined successfully by linear friction welding. In this work, the microstructures and mechanical properties of linear friction welded S31042 steel joint subjected to ageing treatment were investigated by using OM, SEM, TEM and mechanical test at 700 ℃. The recrystallized grains and nanoscale NbCrN particles have been stable during the high-temperature ageing, and the joint exhibited excellent performance due to the grain refinement strengthening and precipitation strengthening. The average size of M23C6 phase in weld zone, thermo-mechanically affected zone and heat affected zone increased with the ageing time. After ageing treatment at 700 ℃ for 500 h, σ phase precipitated at boundary junctions in thermo-mechanically affected zone. The average size of σ phase increased with the ageing time, as well as the volume fraction of the σ-phase. With the formation of σ phase, the fracture site of joints shifted from the parent material to the areas adjacent to the weld zone, and the high-temperature mechanical properties of joints were sharply decreased.
|
Received: 16 November 2017
|
|
Fund: Support by National Natural Science Foundation of China (Nos.51325401, 51474156 and U1660201) and National High Technology Research and Development Program of China (No.2015AA042504) |
[1] | Zhou Y H, Liu Y C, Zhou X S, et al.Precipitation and hot deformation behavior of austenitic heat-resistant steels: A review[J]. J. Mater. Sci. Technol., 2017, 33: 1448 | [2] | Yang Y H, Zhu L H, Wang Q J, et al.Microstructural evolution and the effect on hardness and plasticity of S31042 heat-resistant steel during creep[J]. Mater. Sci. Eng., 2014, A608: 164 | [3] | Zhou Y H, Liu Y C, Zhou X S, et al.Processing maps and microstructural evolution of the type 347H austenitic heat-resistant stainless steel[J]. J. Mater. Res., 2015, 30: 2090 | [4] | Fang Y Y.Precipitation in advanced heat-resistant austenitic steel HR3C [D]. Dalian: Dalian University of Technology, 2010(方圆圆. 新型奥氏体耐热钢HR3C的析出相分析 [D]. 大连: 大连理工大学, 2010) | [5] | Zhou Y H, Liu C X, Liu Y C, et al.Coarsening behavior of MX carbonitrides in type 347H heat-resistant austenitic steel during thermal aging[J]. Int. J. Miner. Metall. Mater., 2016, 23: 283 | [6] | Peng Z F, Ren W, Yang C, et al.Relationship between the evolution of phase parameters of grain boundary M23C6 and embrittlement of HR3C super-heater tubes in service[J]. Acta Metall. Sin., 2015, 51: 1325(彭志方, 任文, 杨超等. HR3C钢运行过热器管的脆化与晶界M23C6相参量演化的关系[J]. 金属学报, 2015, 51: 1325) | [7] | Wang B, Liu Z C, Cheng S C, et al.Microstructure evolution and mechanical properties of HR3C steel during long-term aging at high temperature[J]. J. Iron Steel Res. Int., 2014, 21: 765 | [8] | Zheng L G, Hu X Q, Kang X H, et al.Precipitation of M23C6 and its effect on tensile properties of 0.3C-20Cr-11Mn-1Mo-0.35N steel[J]. Mater. Des., 2015, 78: 42 | [9] | Zhang Z, Hu Z F, Tu H Y, et al.Microstructure evolution in HR3C austenitic steel during long-term creep at 650 ℃[J]. Mater. Sci. Eng., 2017, A681: 74 | [10] | Wang Y, Cai X Q, Yang Z W, et al.Effects of Nb content in Ti-Ni-Nb brazing alloys on the microstructure and mechanical properties of Ti-22Al-25Nb alloy brazed joints[J]. J. Mater. Sci. Technol., 2017, 33: 682 | [11] | Wang Z N, Tian L, Xing W W, et al.σ-phase precipitation mechanism of 15Cr-15Ni titanium-modified austenitic stainless steel during long-term thermal exposure[J]. Acta Metall. Sin.(Engl. Lett.), 2018, 31: 281 | [12] | Schwind M, K?llqvist J, Nilsson J O, et al.σ-phase precipitation in stabilized austenitic stainless steels[J]. Acta Mater., 2000, 48: 2473 | [13] | Zhang Y, Jing H Y, Xu L Y, et al.High-temperature deformation and fracture mechanisms of an advanced heat resistant Fe-Cr-Ni alloy[J]. Mater. Sci. Eng., 2017, A686: 102 | [14] | Liu W, Fan H L, Guo X Z, et al.Mechanical properties of resistance spot welded components of high strength austenitic stainless steel[J]. J. Mater. Sci. Technol., 2016, 32: 561 | [15] | Fu Y, Li W Y, Yang X W.Microstructure analysis of linear friction welded AISI 321 stainless steel joint[J]. J. Eng. Sci. Technol. Rev., 2015, 8: 37 | [16] | Bhamji I, Preuss M, Threadgill P L, et al.Linear friction welding of AISI 316L stainless steel[J]. Mater. Sci. Eng., 2010, A528: 680 | [17] | Li W Y, Vairis A, Preuss M, et al.Linear and rotary friction welding review[J]. Int. Mater. Rev., 2016, 61: 71 | [18] | Turner R, Gebelin J C, Ward R M, et al.Linear friction welding of Ti-6Al-4V: Modelling and validation[J]. Acta Mater., 2011, 59: 3792 | [19] | Li W Y, Ma T J, Li J L.Numerical simulation of linear friction welding of titanium alloy: Effects of processing parameters[J]. Mater. Des., 2010, 31: 1497 | [20] | Ma T J, Li W Y, Xu Q Z, et al.Microstructure evolution and mechanical properties of linear friction welded 45 steel joint[J]. Adv. Eng. Mater., 2007, 9: 703 | [21] | Buffa G, Cammalleri M, Campanella D, et al.Shear coefficient determination in linear friction welding of aluminum alloys[J]. Mater. Des., 2015, 82: 238 | [22] | Avettand-Fèno?l M N, Racineux G, Debeugny L, et al. Microstructural characterization and mechanical performance of an AA2024 aluminium alloy—Pure copper joint obtained by linear friction welding[J]. Mater. Des., 2016, 98: 305 | [23] | Ma T J, Chen X, Li W Y, et al.Microstructure and mechanical property of linear friction welded nickel-based superalloy joint[J]. Mater. Des., 2016, 89: 85 | [24] | Chen X, Xie F Q, Ma T J, et al.Microstructure evolution and mechanical properties of linear friction welded Ti2AlNb alloy[J]. J. Alloys Compd., 2015, 646: 490 | [25] | Chen X, Xie F Q, Ma T J, et al.Effects of post-weld heat treatment on microstructure and mechanical properties of linear friction welded Ti2AlNb alloy[J]. Mater. Des., 2016, 94: 45 | [26] | Li Y M, Liu Y C, Liu C X, et al.Microstructure evolution and mechanical properties of linear friction welded S31042 heat-resistant steel[J]. J. Mater. Sci. Technol., 2018, 34: 653 | [27] | Chen X M, Lin Y C, Chen M S, et al.Microstructural evolution of a nickel-based superalloy during hot deformation[J]. Mater. Des., 2015, 77: 41 | [28] | Doherty R D, Hughes D A, Humphreys F J, et al.Current issues in recrystallization: A review[J]. Mater. Sci. Eng., 1997, A238: 219 | [29] | Zhou X S, Liu C X, Yu L M, et al.Phase transformation behavior and microstructural control of high-Cr martensitic/ferritic heat-resistant steels for power and nuclear plants: A review[J]. J. Mater. Sci. Technol., 2015, 31: 235 | [30] | Bullard J W.Numerical simulations of transient-stage Ostwald ripening and coalescence in two dimensions[J]. Mater. Sci. Eng., 1997, A238: 128 | [31] | Miao K, He Y L, Zhu N Q, et al.Coarsening of carbides during different heat treatment conditions[J]. J. Alloys Compd., 2015, 622: 513 | [32] | Zhang Y H, Feng Q.Effects of W on creep behaviors of novel Nb-bearing austenitic heat-resistant cast steels at 1000 ℃[J]. Acta Metall. Sin., 2017, 53: 1025(张银辉, 冯强. W对新型Nb稳定化奥氏体耐热铸钢1000 ℃蠕变行为的影响[J]. 金属学报, 2017, 53: 1025) | [33] | Fang Y Y, Zhao J, Li X N.Precipitates in HR3Csteel aged at high temperature[J]. Acta Metall. Sin., 2010, 46: 844(方圆圆, 赵杰, 李晓娜. HR3C钢高温时效过程中的析出相[J]. 金属学报, 2010, 46: 844) | [34] | Yan J B, Gu Y F, Sun F, et al.Evolution of microstructure and mechanical properties of a 25Cr-20Ni heat resistant alloy after long-term service[J]. Mater. Sci. Eng., 2016, A675: 289 | [35] | Barcik J.The kinetics of σ-phase precipitation in AISI310 and AISI316 steels[J]. Metall. Trans., 1983, 14A: 635 |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|