Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (1): 100-106    DOI: 10.11900/0412.1961.2014.00335
Current Issue | Archive | Adv Search |
STUDY ON THE INDENTATION BEHAVIORS OF BICRYSTALS BASED ON CRYSTAL PLASTICITY THEORY
YAN Wuzhu1,2, ZHANG Jiazhen1,2(), ZHOU Zhengong2, YUE Zhufeng3
1 Beijing Aeronautical Science and Technology Research Institute of COMAC, Beijing 102211
2 Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080
3 Department of Engineering Mechanics, Northwestern Polytechnical University, Xi'an 710129
Cite this article: 

YAN Wuzhu, ZHANG Jiazhen, ZHOU Zhengong, YUE Zhufeng. STUDY ON THE INDENTATION BEHAVIORS OF BICRYSTALS BASED ON CRYSTAL PLASTICITY THEORY. Acta Metall Sin, 2015, 51(1): 100-106.

Download:  HTML  PDF(2603KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In the past decades, the indentation test has been widely used to determine the mechanical properties of materials. For the micro- or nano- indentation, the indentation response is complex since only one or two grains can be indented by the indenter. In order to investigate the indentation behavior of the grain boundary, the crystal plasticity theory was implemented into finite element model to simulate the indentation behavior of single crystals and bicrystals. The stress distributions on the indented surface and grain boundary were obtained. The results showed that the crystallographic orientations of the neighboring grains had a remarkable influence on the depth-load response and the resolved shear stress distribution of the indented bicrystals. Under the indentation load, stress concentration occurred at the grain boundary, and the stress at the grain boundary increases with the increase of mis-orientation angle of the two neighboring grains.

Key words:  indentation      crystal plasticity      single crystal      bicrystal      grain boundary      finite element     
ZTFLH:  TG111.91  
Fund: Supported by National Natural Science Foundation of China (No.51271067)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00335     OR     https://www.ams.org.cn/EN/Y2015/V51/I1/100

Fig.1  Schematic of the indentations performed on single crystal (a) and bicrystals (b) (R—radius of the indenter, P—indentation load)
Fig.2  Finite element mesh of the model

(a) mesh of the whole model (b) mesh of the indented area

Crystal Case Grain No. j / (o) q / (o) f / (o)
Single crystal A 1 0.0 0.0 0.0
B 1 45.0 0.0 0.0
C 1 65.21 50.76 -63.35
Bicrystal D 1 45.0 0.0 0.0
2 0.0 0.0 0.0
E 1 65.21 50.76 -63.35
2 0.0 0.0 0.0
F 1 65.21 50.76 -63.35
2 45.0 0.0 0.0
Table 1  Euler angles of the grains
Fig.3  Effect of crystallographic orientation on the propagation of indentation depth with applied load P
Mechanical parameter Value Unit
Poisson′s ratio n 0.33
Young′s modulus E 210 GPa
Shear modulus G 83 GPa
Strain rate sensitivity exponent m 0.02
Reference shear rate γ ˙ 0 ( α ) 0.03 s-1
Initial resolved shear stress t0 500 MPa
Hardening law parameter h0 600 MPa
Saturation resolved shear stress ts 585 MPa
Hardening law parameter AA 1.3
Reference strain rate Ga0 300 MPa
Table 2  Mechanical properties of nickel-based single crystal superalloy DD3[23]
Fig.4  Depth-load curves of single crystals and bicrystals

(a) Cases A, B and D

(b) Cases A, C and E

(c) Cases B, C and F

Fig.5  Resolved shear stress distributions on the indented surface for Case A (a), Case B (b) and Case C (c)
Fig.6  Resolved shear stress distributions on the indented surface for Case D (a), Case E (b) and Case F (c)
Fig.7  Distributions of resolved shear stress on the plane of x=0 for Case D (a), Case E (b) and Case F (c)
Fig.8  Resolved shear stress distributions at the grain boundary (y=0) for Case D (a), Case E (b) and Case F (c)
[1] Cheng Y T, Cheng C M. Mater Sci Eng, 2004; R44: 91
[2] Diard O, Leclereq S, Rousselier G, Cailletaud G. Int J Plast, 2005; 21: 691
[3] Raabe D, Sachtleber M, Zhao Z, Roters F, Zaefferer S. Acta Mater, 2001; 49: 3433
[4] Wu X, Kalidindi S R, Necker C, Salem A A. Acta Mater, 2007; 55: 423
[5] Ma Q, Clarke D R. J Mater Res, 1995; 10: 853
[6] Nix W D, Gao H. J Mech Phys Solids, 1998; 46: 411
[7] Taylor G I. J Inst Met, 1938; 62: 307
[8] Hill R, Rice J R. J Mech Phys Solids, 1972; 20: 401
[9] Li H W, Feng L, Yang H. Trans Nonferrous Met Soc China, 2013; 23: 3729
[10] Wen Z X, Yue Z F. Comput Mater Sci, 2007; 40: 140
[11] Segurado J, LLorca J. Int J Plast, 2010; 26: 806
[12] Dong Z G, Huang H, Kang R. Mater Sci Eng, 2010; A527: 4177
[13] Huang H, Wu Y Q, Wang S L, He Y H, Zou J, Huang B Y, Liu C T. Mater Sci Eng, 2009; A523: 193
[14] Chicot D. Mater Sci Eng, 2009; A499: 454
[15] Kang S, Jung Y, Yoo B, Jang J, Lee Y. Mater Sci Eng, 2012; A532: 500
[16] Xu B X. Yonezu A, Yue Z F, Chen X. Comput Mater Sci, 2009; 46: 275
[17] Liu Y, Wang B, Yoshino M, Roy S, Lu H, Komanduri R. J Mech Phys Solids, 2005; 53: 2718
[18] Li L, Shen L M, Proust G, Moy C K S, Ranzi G. Mater Sci Eng, 2013; A579: 41
[19] Yan W Z, Wen S F, Liu J, Yue Z F. Mater Sci Eng, 2010; A527: 1850
[20] Peirce D, Asaro R J, Needleman A. Acta Metall, 1982; 30: 1087
[21] Anand L, Kothari M. J Mech Phys Solids, 1996; 44: 525
[22] Fang X, Yan W Z, Gao H S, Yue Z F, Liu J, Wang F S. Finite Elem Anal Des, 2012; 60: 64
[23] Wan J S, Yue Z F. Appl Math Mech, 2004; 25(1): 39
(万建松, 岳珠峰. 应用数学和力学, 2004; 25(1): 39)
[1] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[2] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[3] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[4] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[6] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[7] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[8] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[9] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[10] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[11] WANG Di, HE Lili, WANG Dong, WANG Li, ZHANG Siqian, DONG Jiasheng, CHEN Lijia, ZHANG Jian. Influence of Pt-Al Coating on Tensile Properties of DD413 Alloy at High Temperatures[J]. 金属学报, 2023, 59(3): 424-434.
[12] LI Xin, JIANG He, YAO Zhihao, DONG Jianxin. Theoretical Calculation and Analysis of the Effect of Oxygen Atom on the Grain Boundary of Superalloy Matrices Ni, Co and NiCr[J]. 金属学报, 2023, 59(2): 309-318.
[13] YANG Du, BAI Qin, HU Yue, ZHANG Yong, LI Zhijun, JIANG Li, XIA Shuang, ZHOU Bangxin. Fractal Analysis of the Effect of Grain Boundary Character on Te-Induced Brittle Cracking in GH3535 Alloy[J]. 金属学报, 2023, 59(2): 248-256.
[14] ZHANG Zixuan, YU Jinjiang, LIU Jinlai. Anisotropy of Stress Rupture Property of Ni Base Single Crystal Superalloy DD432[J]. 金属学报, 2023, 59(12): 1559-1567.
[15] LIU Lujun, LIU Zheng, LIU Renhui, LIU Yong. Grain Boundary Structure and Coercivity Enhancement of Nd90Al10 Alloy Modified NdFeB Permanent Magnets by GBD Process[J]. 金属学报, 2023, 59(11): 1457-1465.
No Suggested Reading articles found!