Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (10): 1210-1216    DOI: 10.11900/0412.1961.2014.00097
Current Issue | Archive | Adv Search |
MICROSTRUCTURE AND ANTIBACTERIAL PROPERTIES OF Ag-BEARING DUPLEX STAINLESS STEEL
XIANG Hongliang(), GUO Peipei, LIU Dong
School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108
Cite this article: 

XIANG Hongliang, GUO Peipei, LIU Dong. MICROSTRUCTURE AND ANTIBACTERIAL PROPERTIES OF Ag-BEARING DUPLEX STAINLESS STEEL. Acta Metall Sin, 2014, 50(10): 1210-1216.

Download:  HTML  PDF(5624KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Nowadays, the events of bacterial infection, food poisoning and biological corrosion damage are increasingly arising. It is urgent to develop new antibacterial material to fight against the drug-resistant bacteria. In this work, Ag-bearing antibacterial duplex stainless steels were prepared by adding Ag or Cu-Ag alloy particles. The microstructure and distribution of Ag-rich phases and Ag electrovalence of the materials after solution treatment at different temperatures have been discussed in detail by ESEM, XRD and TEM. The antibacterial effects of the materials were tested by film-cover method, and compared with CD4MCu and Cu-bearing antibacterial duplex stainless steel. The results indicated that some Ag-bearing phases in diameter of about 8 μm in the matrix of the material prepared by adding Ag after the solution treatment at 1050 and 1150 ℃ were observed, and increasing temperature could not improve the solution solubility of Ag-bearing phases. In addition, some Ag-bearing phases in diameter of 45 nm was found in the matrix of the material after solution treatment at 1150 ℃. For the material prepared by adding Cu-Ag alloy particles after solution treatment at 1050 and 1150 ℃, the solubility of Ag-bearing phases increased with the solution temperature rising. And the smaller the Cu-Ag particles were, the easier the Ag-bearing phases dissolved. For the material prepared by adding Cu-Ag alloy particles in diameter of 150~300 mm after the solution treatment at 1150 ℃, Ag-bearing particles were completely dissolved into γ phase while some in diameter of about 18 nm were evenly distributed in a phase. Antibacterial tests showed that Ag-bearing antibacterial duplex stainless steels prepared by adding different sizes of Cu-Ag alloy particles exhibitted excellent antibacterial effect. The material prepared by adding Ag granules had the antibacterial effect.

Key words:  Ag-bearing antibacterial duplex stainless steel      Cu-Ag alloy      Ag-bearing phase      particle size      solution temperature      antibacterial property     
Received:  04 March 2014     
ZTFLH:  TG172  
Fund: Supported by Program for New Century Excellent Talents in University of Fujian Province (No.JA10014) and Key Project of Science and Technology Department of Fujian Province (No.2014H003)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00097     OR     https://www.ams.org.cn/EN/Y2014/V50/I10/1210

Specimen C Si Mn S P Cr Ni Mo Cu Ag Fe
A1, A2, A3 0.03 0.54 0.74 0.002 0.03 25.91 5.91 1.95 3.16 0.135 Bal.
B1, B2, B3 0.03 0.53 0.79 0.002 0.03 25.74 5.89 1.93 3.14 0.121 Bal.
C1, C2, C3 0.03 0.52 0.79 0.002 0.03 25.82 5.78 1.94 3.16 0.128 Bal.
D 0.03 0.53 0.76 0.001 0.02 25.68 5.90 1.93 3.17 0 Bal.
Table 1  Chemical compositions of four kinds of materials
Fig.1  SEM images of specimens A1 (a), B1 (b), A3 (c), B3 (d) and C3 (e)
Fig.2  XRD spectra of specimens A3 and B3
Specimen Phase Cr Ni Cu Ag Fe
A1 a 30.19 5.34 2.39 - 58.64
γ 23.31 8.31 5.25 - 60.54
Particle 17.27 1.50 18.94 47.53 3.61
B1 a 29.01 5.49 2.74 - 59.89
γ 23.32 7.98 5.92 - 61.17
Particle 12.47 1.57 66.02 13.04 4.56
A3 a 29.09 5.10 2.45 - 59.49
γ 22.28 8.68 5.31 - 61.52
Particle 17.92 1.47 19.45 46.85 3.88
B3 a 28.66 5.41 2.32 - 59.38
γ 23.22 8.11 7.49 - 59.57
C3 a 29.02 5.57 2.41 - 59.07
γ 23.02 7.90 7.03 - 59.68
Particle 12.53 1.68 65.10 12.93 4.42
Table 2  Main chemical compositions of phases in different specimens
Fig.3  TEM images of specimens A3 (a) and B3 (b)
Fig.4  HRTEM images of specimens A3 (a) and B3 (b)
Specimen Phase Cu Ag Ni Cr Fe
A3 a 2.79 - 5.25 31.68 59.26
γ 7.55 - 8.75 22.61 61.06
Particle 8.89 41.87 2.24 19.11 24.86
B3 a 2.36 0.03 5.40 27.56 58.56
γ 7.40 0.12 8.41 20.43 59.06
Particle 2.07 34.31 1.73 17.75 38.99
Fig.3  Contents of main elements in Fig.3 and Fig.4
Specimen Bacteria count / (cfu?mL-1) R / %
3 h 24 h 3 h 24 h
A1 1.90×105 >1.05×105 84.8 <91.6
A2 2.11×105 >1.10×105 83.1 <91.2
A3 1.93×105 >1.05×105 84.6 <91.6
B1 3.75×103 <10 99.7 >99.9
B2 1.75×104 <10 99.6 >99.8
B3 1.25×103 <10 99.9 >99.9
C1 1.00×104 <10 99.2 >99.9
C2 3.75×104 <10 99.4 >99.9
C3 2.50×103 <10 99.8 >99.9
D >1.10×106 1.04×106 <11.3 <16.7
316L 1.25×106 1.25×106 0 0
Table 4  Antibacterial rates (R) of different specimens after different times in bacteria liquid
  
[1] Jones C M, Hoek E M V. J Nanoparticle Res, 2010; 12: 1530
[2] Tanoira R P, Jorge C P, Endrino J L, Barrena E G, Horwat D, Pierson J F, Estenban J. J Phys, 2010; 252: 1
[3] Li B, Liu X Y, Meng F H, Chang J, Ding C. Mater Chem Phys, 2009; 118: 99
[4] Li M Q, Li D C, Qu L J, Zhang A Q, Zhang E L. In: Zhao H ed., 2011 6th International Forum on Strategic Technology, Harbin: IEEE Changwon Section, 2011: 179
[5] Guo P P, Xiang H L, Li J X, Liu D. Spec Cast Nonferrous Alloys, 2013; 33: 470
(郭培培, 向红亮, 李敬鑫, 刘 东. 特种铸造及有色合金, 2013; 33: 470)
[6] Hong I T, Koo C H. Mater Sci Eng, 2005; A393: 213
[7] Lu M Q, Chen S H, Dong J S, Yang K. Chin J Mater Res, 2005; 19: 581
(吕曼祺, 陈四红, 董加胜, 杨 柯. 材料研究学报, 2005; 19: 581)
[8] Li H W, Zhang T B, Zhang T Y. Acta Metall Sin, 2008; 44: 39
(李恒武, 张体宝, 张体勇. 金属学报, 2008; 44: 39)
[9] Li N, Yang K. J Mater Sci Technol, 2010; 26: 941
[10] Xiang H L, Fan J C, Liu D, Guo P P. Acta Metall Sin, 2012; 48: 1081
(向红亮, 范金春, 刘 东, 郭培培. 金属学报, 2012; 48: 1081)
[11] Xiang H L, Fan J C, Liu D, Gu X. Acta Metall Sin, 2012; 48: 1089
(向红亮, 范金春, 刘 东, 顾 兴. 金属学报, 2012; 48: 1089)
[12] Dong J S, Chen S H, Lv M Q, Yang K. Mater Rev, 2004; 18(3): 41
(董加胜, 陈四红, 吕曼祺, 杨 柯. 材料导报, 2004; 18(3): 41)
[13] Yang K, Dong J S, Chen S H, Lu M Q. Chin J Mater Res, 2006; 20: 523
(杨 柯, 董加胜, 陈四红, 吕曼祺. 材料研究学报, 2006; 20: 523)
[14] Yokota T, Tochihara M, Ohta M. Kawasaki Steel Technical Report, 2002; 46: 37
[15] Liao K H, Ou K L, Cheng H C, Lin C T, Peng P W. Appl Surf Sci, 2010; 256: 3642
[16] Fang Y Y. PhD Dissertation, I-Shou University, Taibei, China, 2009
(方怡雅. 义守大学博士学位论文, 中国台北, 2009)
[17] Zhou Y Z. PhD Dissertation, I-Shou University, Taibei, China, 2011
(周雍智. 义守大学博士学位论文, 中国台北, 2011)
[18] Shen Z L. In: Tian Z L ed., Corrosion Resistance of Metal Materials of the 11th Academic Conference Proceedings, Baotou: Chinese Corrosion and Protection Society, 2008: B-25
(沈忠良. 见: 田志凌主编, 耐蚀金属材料第十一届学术年会论文集, 包头: 中国腐蚀与防护学会, 2008: B-25)
[19] Li N, Zhang W, Xu Y G, Zeng W, Jia W X. Spec Steel, 2004; 25: 42
[20] Lin G, Shen J C, Jiang L Z. Chin Pat, 200710039746.3, 2007
(林刚, 沈继程, 江来珠. 中国专利, 200710039746.3, 2007)
[21] Xiang H L, He F S, Liu D. Acta Metall Sin, 2009; 45: 1456
(向红亮, 何福善, 刘 东. 金属学报, 2009; 45: 1456)
[22] Xiang H L, Fan J C, Liu D, Gu X. Acta Metall Sin, 2012; 48: 1089
(向红亮, 范金春, 刘 东, 顾 兴. 金属学报, 2012; 48: 1089)
[23] Wang H, Liang C H. Corros Sci Prot Technol, 2004; 16: 96
(王 华, 梁成浩. 腐蚀科学与防护技术, 2004; 16: 96)
[24] Yokota T, Tochihara M, Ohta M. Kawasaki Steel Technical Report, 2002; 46: 37
[25] Ales P, Milan K, Renata V, Robert P, Jana S, Vladimir K, Petr H, Radek Z Libor K. Biomaterials, 2009; 31: 6333
[1] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] ZHANG Qiliang, WANG Yuchao, LI Guangda, LI Xianjun, HUANG Yi, XU Yunze. Erosion-Corrosion Performance of EH36 Steel Under Sand Impacts of Different Particle Sizes[J]. 金属学报, 2023, 59(7): 893-904.
[3] WANG Meng, YANG Yongqiang, Trofimov Vyacheslav, SONG Changhui, ZHOU Hanxiang, WANG Di. Effects of Particle Size on Processability of AlSi10Mg Alloy Manufactured by Selective Laser Melting[J]. 金属学报, 2023, 59(1): 147-156.
[4] ZHOU Hongyu, RAN Minrui, LI Yaqiang, ZHANG Weidong, LIU Junyou, ZHENG Wenyue. Effect of Diamond Particle Size on the Thermal Properties of Diamond/Al Composites for Packaging Substrate[J]. 金属学报, 2021, 57(7): 937-947.
[5] Miao JIN, Wenquan LI, Shuo HAO, Ruixue MEI, Na LI, Lei CHEN. Effect of Solution Temperature on Tensile Deformation Behavior of Mn-N Bearing Duplex Stainless Steel[J]. 金属学报, 2019, 55(4): 436-444.
[6] Cong PENG, Shuyuan ZHANG, Ling REN, Ke YANG. Effect of Cooling Rate on Microstructure and Properties ofa Cu-Containing Titanium Alloy[J]. 金属学报, 2017, 53(10): 1377-1384.
[7] Xiaowei ZUO,Rui GUO,Bailing AN,Lin ZHANG,Engang WANG. MICROSTRUCTURE, HARDNESS AND ELECTRICAL RESISTIVITY OF DIRECTIONALLY SOLIDIFIEDCu-6%Ag ALLOY UNDER A TRANSVERSE MAGNETIC FIELD[J]. 金属学报, 2016, 52(2): 143-150.
[8] XIANG Hongliang FAN Jinchun LIU Dong GU Xing. EFFECTS OF ANTIBACTERIAL AGING TREATMENT ON MICROSTRUCTURE AND PROPERTIES OF COPPER-CONTAINING DUPLEX STAINLESS STEEL
II. Corrosion Resistance and Antibacterial Properties
[J]. 金属学报, 2012, 48(9): 1089-1096.
[9] YAN Zhiqiao CHEN Feng CAI Yixiang. HIGH VELOCITY COMPACTION BEHAVIOR AND SINTERED PROPERTIES OF Ti POWDERS WITH DIFFERENT PARTICLE SIZES[J]. 金属学报, 2012, 48(3): 379-384.
[10] DU Huiling WANG Jianzhong QI Jingang HE Lijia CANG Daqiang . EFFECTS OF PULSED ELECTROMAGNETIC FIELD ON CoC2O4·2H2O POWDER SIZE[J]. 金属学报, 2009, 45(8): 1019-1024.
[11] ZHAO Shixian SONG Xiaoyan WANG Mingsheng WEI Chongbin ZHANG Jiuxing LIU Xue. MATCHING OF PARTICLE SIZES OF WC/Co POWDERS AND SPARK PLASMA SINTERING DENSIFICATION[J]. 金属学报, 2009, 45(4): 497-502.
[12] Liang Meng. EFFECTS OF ANNEALING TEMPERATURE ON INTENSITY AND DISTRIBUTION OF CRYSTAL TEXTURE IN Cu-12% Ag FILAMENTARY COMPOSITE[J]. 金属学报, 2008, 44(1): 43-48 .
[13] Liang Meng. STEPPED INTERFACE AND CRYSTAL ORIENTATION IN THE EUTECTIC STRUCTURE OF Cu-71.8 wt.% Ag ALLOY[J]. 金属学报, 2007, 43(8): 803-806 .
[14] . [J]. 金属学报, 2007, 43(6): 643-647 .
[15] LIU Jiabin; Liang Meng. STRAIN COMPATIBILITY BEHAVIOR IN Cu-6%Ag ALLOY DURING DRAWING INTO FILAMENTARY STRUCTURE[J]. 金属学报, 2006, 42(9): 931-936 .
No Suggested Reading articles found!