Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (8): 989-994    DOI: 10.11900/0412.1961.2014.00026
Current Issue | Archive | Adv Search |
STUDY ON PREPARATION OF Al-Li-Gd ALLOYS BY ELECTROCHEMICAL CODEPOSITION FROM CHLORIDE MELTS
YAN Yongde1,2(), YANG Xiaonan2, ZHANG Milin2, WANG Li2, XUE Yun3, ZHANG Zhijian1
1 Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin 150001
2 Key Laboratory of Superlight Materials and Surface Technology (Ministry of Education) , Harbin Engineering University, Harbin 150001
Cite this article: 

YAN Yongde, YANG Xiaonan, ZHANG Milin, WANG Li, XUE Yun, ZHANG Zhijian. STUDY ON PREPARATION OF Al-Li-Gd ALLOYS BY ELECTROCHEMICAL CODEPOSITION FROM CHLORIDE MELTS. Acta Metall Sin, 2014, 50(8): 989-994.

Download:  HTML  PDF(3439KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The electrochemical co-reduction process of Gd(III) and Al(III) and the preparation of Al-Li-Gd alloys were studied in LiCl-KCl-AlCl3-GdCl3 molten salt at 773 K by cyclic voltammetry, square wave voltammetry and chronopotentiometry. XRD, SEM-EDS were employed to characterize Al-Li-Gd alloys. The results suggested that the underpotential deposition (UPD) of Gd(III) on pre-deposited Al forms two Al-Gd intermetallic compounds. When current densities was higher than -279.5 mA/cm2, the co-reduction of Al, Li and Gd occurred. Different phases Al-Gd alloys can be obtained by adjusting the concentration of AlCl3. XRD indicated that the Al-Li-Gd alloys contain Al2Gd and Al2Gd3 phases. The analysis of SEM and EDS demonstrated that the element Gd distributes unevenly while Al is relatively uniform distribution.

Key words:  molten salt      electrochemical behavior      electrochemical codeposition      Al-Li-Gd alloy     
Received:  10 January 2014     
ZTFLH:  TF777.1  
Fund: Supported by High Technology Research and Development Program of China (No.2011AA03A409), National Natural Science Foundation of China (Nos.21103033, 21101040 and 91226201), Fundamental Research Funds for the Central Universities (No.HEUCF141502), Foundation for University Key Teacher of Heilongjiang Province and Harbin Engineering University (Nos.1253G016 and HEUCFQ1415) and Special Foundation of China and Heilongjiang Postdoctoral Science Foundation (Nos.2013T60344 and LBH-TZ0411)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00026     OR     https://www.ams.org.cn/EN/Y2014/V50/I8/989

Fig.1  Cyclic voltammograms of the LiCl-KCl melt system before and after the addition of AlCl3 at 773 K (scan rate: 100 mV /s, i— current density, E— potential)
Fig.2  Cyclic voltammogram of LiCl-KCl melt system containing both AlCl3 and GdCl3 at different cathodic limits at 773 K ( scan rate: 100 mV/s)
Fig.3  Square wave voltammogram of the LiCl-KCl-AlCl3-GdCl3 melt system at 773 K (pulse height: 25 mV; potential step: 1 mV; frequency: 20 Hz)
Fig.4  Chronopotentiograms of the LiCl-KCl-AlCl3-GdCl3 melt system at different current intensities at 773 K
Fig.5  Open-circuit chronopotentiogram electrodepositing at -2.45 V for 1 s in the LiCl-KCl-AlCl3-GdCl3 melt system at 773 K
Fig.6  XRD spectra of deposits obtained by galvanostatic electrolysis in the LiCl-KCl-AlCl3-GdCl3 (1%) melt system with different content AlCl3 at 923 K
Fig.7  SEM image (a) and elemental mappings of Al (b) and Gd (c) of Al-Li-Gd alloy obtained in LiCl-KCl-AlCl3 (15%)-GdCl3 (1%) melt system at 923 K
Fig.8  SEM image (a) and EDS analyses of points 1, 2 and 3 in Fig.8a (b~d) of Al-Li-Gd alloy obtained in LiCl-KCl-AlCl3(15%)-GdCl3 (1%) melt system at 923 K
[1] Gao Y J, Huang C G, Wei Y Y, Liu H, Mo Q F. J Chin Rare Earth Soc, 2005; 23(spec): 221
(高英俊, 黄创高, 韦银燕, 刘 慧, 莫其逢. 中国稀土学报, 2005; 23(专辑): 221)
[2] Yin Z M. Aust K T, Weatherly G C. Acta Metall Sin, 1988; 24: 347
(尹志民, Aust K T, Weatherly G C. 金属学报, 1988; 24: 347)
[3] Gao H L, Wu G Y. Mater Rev, 2007; 21: 87
(高洪林, 吴国元. 材料导报, 2007; 21: 87)
[4] Chen Z, Li M L, He M. Acta Metall Sin, 1991; 27: 153
(陈 铮, 李明利, 何 明. 金属学报, 1991; 27: 153)
[5] Gui Q H, Ma L M, Jiang X J, Liang G J, Li Y Y. Prog Mater Sci, 1993; 7: 396
(桂全红, 马禄铭, 蒋晓军, 梁国军, 李依依. 材料科学进展, 1993; 7: 396)
[6] Zheng Z Q, Zhao Y Q, Yin D F, Liang S Q, Tan C Y. J Central-South Inst Min Metall, 1992; 23: 546
(郑子樵, 赵永庆, 尹登峰, 梁叔全, 谭澄宇. 中南矿冶学院学报, 1992; 23: 546)
[7] Zhang X G, Mei F Q, Zhang H Y, Wang S H, Fang C F, Hao H. Mater Sci Eng, 2012; A552: 230
[8] Guo T, Wang S D, Ye X S, Li Q, Liu H N, Guo M, Wu Z J. Sci China, 2012; 42B: 1328
(郭 探, 王世栋, 叶秀深, 李 权, 刘海宁, 郭 敏, 吴志坚. 中国科学, 2012; 42B: 1328)
[9] Guo R, Cao W L, Zhai X J, Zhang M J, Zhang T A. Chin J Rare Met, 2008; 32: 645
(郭 瑞, 曹文亮, 翟秀静, 张明杰, 张廷安. 稀有金属, 2008; 32: 645)
[10] Tong Y X, Yang Q Q, Liu G K, Zhong Q Z. Rare Met, 1995; 14: 127
[11] Liu G K, Tong Y X, Hong H C, Yang Q Q, Chen S Y, Gu J X. J Chin Rare Earth Soc, 1997; 15: 300
(刘冠昆, 童叶翔, 洪惠婵, 杨绮琴, 陈胜洋, 辜进喜. 中国稀土学报, 1997; 15: 300)
[12] Qiu G H, Wang D H, Jin X B, Chen G Z. Electrochim Acta, 2006; 51: 5785
[13] Qiu G H, Wang D H, Ma M, Jin X B, Chen G Z. J Electroanal Chem, 2006; 589: 139
[14] Qiu G H, Wang D H, Jin X B, Chen Z. Acta Metall Sin, 2008; 44: 859
(邱国红, 汪的华, 金先波, 陈 政. 金属学报, 2008; 44: 859)
[15] Du J H, Xi Z P, Li Q Y, Li Z X, Tang Y. Rare Met Mater Eng, 2008; 37: 2240
(杜继红, 奚正平, 李晴宇, 李争显, 唐 勇. 稀有金属材料与工程, 2008; 37: 2240)
[16] Li Q Y, Du J H, Xi Z P, Li Z X, Yang C B. Chin J Rare Met, 2011; 35: 829
(李晴宇, 杜继红, 奚正平, 李争显, 杨承本. 稀有金属, 2011; 35: 829)
[17] Iida T, Nohira T, Ito Y. Electrochim Acta, 2003; 48: 901
[18] Konishi H, Nohira T, Ito Y. Electrochim Acta, 2002; 47: 3533
[19] Yan Y D, Li X, Zhang M L, Xue Y, Tang H, Han W, Zhang Z J. J Electrochem Soc, 2012; 159: D649
[20] Tang H, Yan Y D, Zhang M L, Li X, Huang Y, Xu Y L, Xue Y, Han W, Zhang Z J. Electrochim Acta, 2013; 88: 457
[21] Yan Y D, Tang H, Zhang M L, Xue Y, Han W, Cao D X, Zhang Z J. Electrochim Acta, 2012; 59: 531
[22] Yan Y D, Xu Y L, Zhang M L, Xue Y, Han W, Huang Y, Chen Q, Zhang Z J. J Nucl Mater, 2013; 433: 152
[23] Bermejo M R, Gómez J, Medina J, Martínez A M, Castrillejo Y. J Electroanal Chem, 2006; 588: 253
[24] Caravaca C, Córdoba G D. Z Naturforsch, 2008; 63A: 98
[25] Liu K, Liu Y L, Yuan L Y, Zhao X L,Chai Z F, Shi W Q. Electrochim Acta, 2013; 109: 732
[26] Chen Z, Zhang M L, Han W, Li S J, Wang J, Yan Y D, Hou Z Y. Rare Met Mater Eng, 2009; 38: 456
(陈 增, 张密林, 韩 伟, 李胜军, 王 君, 颜永得, 候智尧. 稀有金属材料与工程, 2009; 38: 456)
[27] Castrillejo Y, Fernández P, Medina J, Hernández P, Barrado E. Electrochim Acta, 2011; 56: 8638
[28] Massalski T B, Okamoto H, Subramanian P R, Kacprzak L. Binary Alloy Phase Diagrams. 2nd Ed., Materials Park, ohio: ASM international, 1990: 297
[29] Castrillejo Y, Bermejo M R, Barrado A I, Pardo R, Barrado E, Martínez A M. Electrochim Acta, 2005; 50: 2047
[30] Bae S E, Park Y J, Min S K, Cho Y H, Song K. Electrochim Acta, 2010; 55: 3022
[1] CHENG Weili, GU Xiongjie, CHENG Shiming, CHEN Yuhang, YU Hui, WANG Lifei, WANG Hongxia, LI Hang. Discharge Performance and Electrochemical Behaviors of the Extruded Mg-2Bi-0.5Ca-0.5In Alloy as Anode for Mg-Air Battery[J]. 金属学报, 2021, 57(5): 623-631.
[2] Hongzhong YUAN,Zhiyong LIU,Xiaogang LI,Cuiwei DU. Influence of Applied Potential on the Stress Corrosion Behavior of X90 Pipeline Steel and Its Weld Joint in Simulated Solution of Near Neutral Soil Environment[J]. 金属学报, 2017, 53(7): 797-807.
[3] Tao LIU,Jiasheng DONG,Guang XIE,Yisheng WANG,Hui LI,Zhijun LI,Xingtai ZHOU,Langhong LOU. CORROSION BEHAVIOR OF GH3535 SUPERALLOY IN FLiNaK MOLTEN SALT[J]. 金属学报, 2015, 51(9): 1059-1066.
[4] Chuan HONG,Yunming GAO,Chuanghuang YANG,Zhibo TONG. ELECTROCHEMICAL BEHAVIOR OF Ni2+ IN SiO2-CaO-MgO-Al2O3 MOLTEN SLAG AT 1673 K[J]. 金属学报, 2015, 51(8): 1001-1009.
[5] SUN Ting, SONG Renbo, YANG Fuqiang, LI Yaping, WU Chunjing. ABRASIVE WEAR BEHAVIOR OF LOWER BAINITE DUCTILE IRON IN CORROSION MEDIA[J]. 金属学报, 2014, 50(11): 1327-1334.
[6] GONG Wenbiao, LI Renwei, LI Yupeng,SUN Daqian, WANG Wenquan. STABILIZATION AND CORROSION RESISTANCE UNDER HIGH-TEMPERATURE OF NANOSTRUCTURED CeO2/ZrO2-Y2O3 THERMAL BARRIER COATING[J]. 金属学报, 2013, 49(5): 593-598.
[7] WANG Shulan CHEN Xiaoyun. STUDY ON THE ELECTRO–REFINING SILICON IN MOLTEN SALT CaCl2–NaCl–CaO[J]. 金属学报, 2012, 48(2): 183-186.
[8] PENG Haijian JIN Jun LI Defu HU Jie. CORROSION BEHAVIORS OF Ni-Cr-Mo CORROSION RESISTENCE ALLOYS IN CaCl2-CaF2 MOLTEN SALT[J]. 金属学报, 2011, 47(9): 1195-1199.
[9] ZHOU Hebing LIANG Man Lü Dongsheng XU Mengqing LI Weishan. ELECTROCHEMICAL BEHAVIORS OF ZINC–INDIUM ALLOY ELECTROPLATING IN ALKALINE SOLUTIONS[J]. 金属学报, 2011, 47(8): 1055-1060.
[10] WEI Shuquan ZHANG Milin HAN Wei YAN Yongde ZHANG Bin. STUDY ON ELECTROCHEMICAL CODEPOSITION OF Mg-Li-Gd ALLOYS FROM CHLORIDE MELTS[J]. 金属学报, 2011, 47(2): 173-178.
[11] LV Jiaxin; ZHENG Lei; ZHANG Maicang; DONG Jianxin. CORROSION BEHAVIOR OF NICKEL BASE ALLOY FGH95 IN MOLTEN NaCl–Na2SO4[J]. 金属学报, 2009, 45(2): 204-210.
[12] ;. Investigation on Preparation of Tb2Fe17 by Direct Electrochemical Reduction of Tb4O7-Fe2O3 Pellet in Molten Calcium Chloride[J]. 金属学报, 2008, 44(7): 859-862 .
[13] ;. EXPERIMENTAL RESEARCH OF PREPARATION OF CaB6 BY MOLTEN SALT ELECTROLYSIS METHOD[J]. 金属学报, 2008, 44(10): 1243-1246 .
[14] . PREPARATION OF TANTALUM BY ELECTRO-DEOXIDATION IN A CACL2-NACL MELT[J]. 金属学报, 2006, 42(3): 285-289 .
[15] ZHANG Jian(Metallurgical Engineering School; University of Science and Technology Beijing; Beijing 100083). CONSISTENCY(OR SIMILARITY) OF THERMODYNAMIC PROPERTIES OF METALLURGICAL MELTS WITH THEIR PHASE DIAGRAMS[J]. 金属学报, 1998, 34(7): 742-752.
No Suggested Reading articles found!