|
|
ELECTROCHEMICAL BEHAVIOR OF Ni2+ IN SiO2-CaO-MgO-Al2O3 MOLTEN SLAG AT 1673 K |
Chuan HONG1,2,Yunming GAO1,2( ),Chuanghuang YANG2,Zhibo TONG2 |
1 The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081 2 Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081 |
|
Cite this article:
Chuan HONG,Yunming GAO,Chuanghuang YANG,Zhibo TONG. ELECTROCHEMICAL BEHAVIOR OF Ni2+ IN SiO2-CaO-MgO-Al2O3 MOLTEN SLAG AT 1673 K. Acta Metall Sin, 2015, 51(8): 1001-1009.
|
Abstract The modern iron and steel industry produces large emissions of CO2 annually. Electrolytic reduction of molten slag containing iron oxide at high temperature using an inert oxygen evolving anode is an alternative process to reduce or eliminate the formation of CO2. In order to establish reasonable process parameters of electrolytic method for steel containing Ni, it is necessary to master the electrochemical behavior of Ni2+ in molten slag. However, investigations on the electrochemical behavior of Ni2+ in molten slag at higher temperatures were very limited, which can probably be attributed to the experimental difficulties associated with the operation of high-temperature electrochemical cells. An electrolytic cell with a controlled oxygen flow and Pt, O2(air)|ZrO2 used as reference electrode was constructed integrally through a one-end-closed magnesia partially stabilized ZrO2 solid electrolyte tube. Electrochemical behavior of Ni2+ on Ir electrode was investigated in SiO2-CaO-MgO-Al2O3 molten slag at 1673 K by means of electrochemical techniques such as cyclic voltammetry (CV), square wave voltammetry (SWV), chronopotentiometry (CP) and potentiostatic electrolysis. The results show that both diffusion in the molten slag and electromigration in the ZrO2 solid electrolyte for the O2- are not rate-determining steps of electrochemical reduction reaction process of electroactive ions. It is feasible to study electrochemical behavior of Ni2+ in the molten slag with the aid of the electrolytic cell with a controlled oxygen flow under the present experimental conditions. The reduction of Ni2+ on the Ir electrode in the molten slag is found to be a reversible reaction with a single step, and the rate of the process is diffusion controlled. Two diffusion coefficients of Ni2+ in the molten slag containing 3%NiO derived respectively from CV and CP are (3.50±0.18)×10-6 and (2.80±0.22)×10-6 cm2/s, which are consistent with records in the relevant literatures.
|
|
Fund: Supported by National Natural Science Foundation of China (No.51174148) |
[1] | Sun W Q, Cai J J, Mao H J. J Iron Steel Res Int, 2011; 18(6): 31 | [2] | Xu W Q, Li Y J, Zhu T Y, Cao W J. Chin J Process Eng, 2013; 13(1): 175 (徐文青, 李寅蛟, 朱廷钰, 曹万杰. 过程工程学报, 2013; 13(1): 175) | [3] | Wang D H, Gmitter A J, Sadoway D R. J Electrochem Soc, 2011; 158(6): E51 | [4] | Kim H J, Paramore J, Allanore A, Sadoway D R. J Electrochem Soc, 2011; 158(10): E101 | [5] | Semkow K W, Rizzo R A, Haskin L A, Lindstrom D J. Geochim Cosmochim Acta, 1982; 46: 1879 | [6] | Colson R O, Haskin L A, Keedy C R. Geochim Cosmochim Acta, 1991; 55: 2831 | [7] | Strycker J D, Westbroek P, Temmerman E. J Non-Cryst Solids, 2004; 347: 231 | [8] | Colson R O, Keedy C R, Haskin L A. Geochim Cosmochim Acta, 1995; 59: 965 | [9] | Clau?en O, Rüssel C. J Non-Cryst Solids, 1997; 215: 68 | [10] | Clau?en O, Rüssel C. Solid State Ionics, 1998; 105: 289 | [11] | Medlin M W, Sienerth K D, Schreiber H D. J Non-Cryst Solids, 1998; 240: 193 | [12] | Clau?en O, Gerlach S, Rüssel C. J Non-Cryst Solids, 1999; 253: 76 | [13] | Takahashi K,?Miura Y. J Non-Cryst Solids,1980; 38-39(Part 2): 527 | [14] | Wang C Z. Solid Electrolyte and Chemical Sensors. Beijing: Metallurgical Industry Press, 2000: 259 (王常珍. 固体电解质和化学传感器. 北京: 冶金工业出版社, 2000: 259) | [15] | Fray D J. Metall Mater Trans, 2003; 34B: 589 | [16] | Van Wijngaarden M J U T, Dippenaar R J, Van den Heever P M. J S Afr Inst Min Metall, 1987; 87: 269 | [17] | Gao Y M, Song J X, Zhang Y Q, Guo X M. Acta Metall Sin, 2010; 46: 277 (高运明, 宋建新, 张业勤, 郭兴敏. 金属学报, 2010; 46: 277) | [18] | Ganesan R, Gnanasekaran T, Srinivasa R S. J Nucl Mater, 2006; 349: 133 | [19] | Iwase M, Ogura T, Tsujino R. Steel Res, 1994; 65: 90 | [20] | Turkdogan E T. Ironmaking Steelmaking, 2000; 27: 32 | [21] | Soral P, Pal U, Larson H R, Schroeder B. Metall Mater Trans, 1999; 30B: 307 | [22] | Kim W, Min D J, Lee Y S, Park J H. ISIJ Int, 2009; 49: 1882 | [23] | Lu X G, Zou X L, Li C H, Zhong Q D, Ding W Z, Zhou Z F. Metall Mater Trans, 2012; 43B: 503 | [24] | Gratz E S, Guan X, Milshtein J D, Pal U B, Powell A C. Metall Mater Trans, 2014; 45B: 1325 | [25] | Gao Y M, Wang B, Wang S B, Peng S. J Min Metall Sect, 2013; 49B: 49 | [26] | Mallika C, Sreedharan O M, Subasri R. J Eur Ceram Soc, 2000; 20: 2297 | [27] | Britten S C, Pal U B. Metall Mater Trans, 2000; 31B: 733 | [28] | Gao Y M, Jiang Y, Zhang H, Guo X M, Zhou G Z. J Wuhan Univ Sci Techenol, 2007; 30: 449 (高运明, 姜 英, 张 华, 郭兴敏, 周国治. 武汉科技大学学报, 2007; 30: 449) | [29] | Wang S B. Master Thesis, Wuhan University of Science and Technology, 2013 (王少博. 武汉科技大学硕士学位论文, 2013) | [30] | Jaccoud A, Fóti G, Comninellis C. Electrochim Acta, 2006; 51: 1264 | [31] | Wang G W, Li H P, Xu L P, Zhang L, Zhang Y Q, Dou J. J Univ Sci Technol Beijing, 2010; 32: 67 (王光伟, 李和平, 徐丽萍, 张 磊, 张艳清, 窦 静. 北京科技大学学报, 2010; 32: 67) | [32] | Bale C W, Chartrand P, Degterov S A. Calphad, 2002; 26: 189 | [33] | Okamoto H. J Phase Equilib Diffus, 2007; 28: 495 | [34] | Fujishima A,Aisawa M,Inoue T,translated by Chen Z,Yao J N. Experimental Methods of Electrochemistry. Beijing: Peking University Press, 1995: 156 (Fujishima A,Aisawa M,Inoue T著,陈 震,姚建年译. 电化学测定方法. 北京: 北京大学出版社, 1995: 156) | [35] | Suk M O, Park J H. J Am Ceram Soc, 2009; 92: 717 | [36] | Guan C S, Duan S Z, Wang X D. Chin J Nonferrous Met, 1996; 6: 51 (管从胜, 段淑贞, 王新东. 中国有色金属学报, 1996; 6: 51) | [37] | Ghallali H E, Groult H, Barhoun A, Draoui K, Krulic D, Lantelme F. Electrochim Acta, 2009; 54: 3152 | [38] | Guo Q W,Wang G S,Guo G C. Binary Phase Atlas of Common Nonferrous Metals. Beijing: Chemical Industry Press, 2009: 120 (郭青蔚,王桂生,郭庚辰. 常用有色金属二元合金相图集. 北京: 化学工业出版社, 2009: 120) | [39] | Massot L, Chamelot P, Taxil P. Electrochim Acta, 2005; 50: 5510 | [40] | Hamela C, Chamelotb P, Laplace A. Electrochim Acta, 2007; 52: 3995 | [41] | Wu Y K, Xu Z G, Chen S, Wang L J, Li G X. Rare Met, 2011; 30: 8 | [42] | Chen J X. Handbook of Diagrams and Data in Common Use for Steelmaking. 2nd Ed., Beijing: Metallurgical Industry Press, 2010: 281 (陈家祥. 炼钢常用图表数据手册. 第2版, 北京: 冶金工业出版社, 2010: 281) | [43] | Zhang J Y. Physical Chemistry of Metallurgy. Beijing: Metallurgical Industry Press, 2004: 336 (张家芸. 冶金物理化学. 北京: 冶金工业出版社, 2004: 336) | [44] | Hamel C, Chamelot P, Taxil P. Electrochim Acta, 2004; 49: 4467 | [45] | Bard A J, Faulkner L R. Electrochemical Methods Fundamentals and Applications. 2nd Ed., New York: John Wiley & Sons Inc., 2001: 311 | [46] | Southampton Electrochemical Group,translated by Liu H T,Xu P D. Instrumental Methods in Electrochemistry. Shanghai: Fudan University Press, 1992: 63 (Southampton Electrochemical Group编,柳厚田,徐品弟译. 电化学中的仪器方法. 上海: 复旦大学出版社, 1992: 63 ) | [47] | Goto K S. In: Fine H A, Gaskell D R eds., Proc 2nd Int Symp on Metallurgical Slags and Fluxes, Lake Tahoe, Nevada: Metallurgical Society of AIME, 1984: 839 |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|