Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (8): 1001-1009    DOI: 10.11900/0412.1961.2015.00065
Current Issue | Archive | Adv Search |
ELECTROCHEMICAL BEHAVIOR OF Ni2+ IN SiO2-CaO-MgO-Al2O3 MOLTEN SLAG AT 1673 K
Chuan HONG1,2,Yunming GAO1,2(),Chuanghuang YANG2,Zhibo TONG2
1 The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081
2 Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081
Cite this article: 

Chuan HONG,Yunming GAO,Chuanghuang YANG,Zhibo TONG. ELECTROCHEMICAL BEHAVIOR OF Ni2+ IN SiO2-CaO-MgO-Al2O3 MOLTEN SLAG AT 1673 K. Acta Metall Sin, 2015, 51(8): 1001-1009.

Download:  HTML  PDF(2950KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The modern iron and steel industry produces large emissions of CO2 annually. Electrolytic reduction of molten slag containing iron oxide at high temperature using an inert oxygen evolving anode is an alternative process to reduce or eliminate the formation of CO2. In order to establish reasonable process parameters of electrolytic method for steel containing Ni, it is necessary to master the electrochemical behavior of Ni2+ in molten slag. However, investigations on the electrochemical behavior of Ni2+ in molten slag at higher temperatures were very limited, which can probably be attributed to the experimental difficulties associated with the operation of high-temperature electrochemical cells. An electrolytic cell with a controlled oxygen flow and Pt, O2(air)|ZrO2 used as reference electrode was constructed integrally through a one-end-closed magnesia partially stabilized ZrO2 solid electrolyte tube. Electrochemical behavior of Ni2+ on Ir electrode was investigated in SiO2-CaO-MgO-Al2O3 molten slag at 1673 K by means of electrochemical techniques such as cyclic voltammetry (CV), square wave voltammetry (SWV), chronopotentiometry (CP) and potentiostatic electrolysis. The results show that both diffusion in the molten slag and electromigration in the ZrO2 solid electrolyte for the O2- are not rate-determining steps of electrochemical reduction reaction process of electroactive ions. It is feasible to study electrochemical behavior of Ni2+ in the molten slag with the aid of the electrolytic cell with a controlled oxygen flow under the present experimental conditions. The reduction of Ni2+ on the Ir electrode in the molten slag is found to be a reversible reaction with a single step, and the rate of the process is diffusion controlled. Two diffusion coefficients of Ni2+ in the molten slag containing 3%NiO derived respectively from CV and CP are (3.50±0.18)×10-6 and (2.80±0.22)×10-6 cm2/s, which are consistent with records in the relevant literatures.

Key words:  Ni2+      molten slag      electrochemical behavior      cathodic process      electrolytic cell with controlled oxygen flow     
Fund: Supported by National Natural Science Foundation of China (No.51174148)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00065     OR     https://www.ams.org.cn/EN/Y2015/V51/I8/1001

Fig.1  Schematic of electrolytic cell
Fig.2  Open circuit potential (E)-time (t) curve response to dropping working electrode into molten slag containing 3%NiO and switching from Ar to air in the furnace tube
Fig.3  Cyclic voltammetric curves for molten slag with different NiO concentrations (wNiO = 0, 1%, 3%, 5%) at scan rate of v = 0.2 V/s (E—potential, I—current)
Fig.4  Square wave voltammetric curves for the blank slag with frequency value of 30 Hz and for molten slag containing wNiO=3% with different frequencies of 20, 30 and 40 Hz (Amplitude is 25 mV)
Fig.5  SEM images of the cross-section of Ir electrode for slag containing wNiO=3% after potentiostatic electrolysis at -0.25 V (a), -0.70 V (b) and -1.30 V (c)
Fig.6  EDS analyses of spots 1 (a), 2 (b), 3 (c) and 4 (d) corresponding to Fig.5
Fig.7  SEM images of the MSZ-slag interface for slag containing wNiO=3% after potentiostatic electrolysis at -0.70 V (a) and -1.30 V (b)
Fig.8  Cyclic voltammetric curves at scan rate of v=0.5 V/s with different scan cycles (wNiO=3%)
Fig.9  Cyclic voltammetric curves for molten slag containing wNiO=3% at different scan rates (v)
Fig.10  Reversal chronopotentiometry for molten slag containing wNiO=3% with cathodic/anodic current of ±8 mA
Fig.11  Linear dependence of current of cathodic peak (Ipc) with v1/2 corresponding to Fig.9
Slag system (mass fraction) wNiO / % T / K Method D / (cm2·s-1) Ref.
55.6%SiO2-25.9%CaO-18.5%MgO 0.3 1673 CV 1.6×10-6 * [5]
51.8%SiO2-24.2%CaO-13.0%MgO-11%Al2O3 0.163 1723 CV 8.49×10-7 [8]
57.9%SiO2-17.7%Na2O-14.7%B2O3-5.7%Li2O- 1.0 1423 SWV 4.8×10-8 [11]
2.0%MgO-1.0%TiO2-0.5%ZrO2-0.5%La2O3
59.0%SiO2-18.0%Na2O-14.0%B2O3-6.0%Li2O- 0.3~0.6 1393 SWV 6.3×10-7 * [12]
2.0%MgO-0.5%ZrO2-0.5%La2O3
72%SiO2-16Na2O-12%CaO Unspecified 1623 Potential sweep 2.5×10-7 * [13]
39.9%SiO2-21.0%CaO-10.2%MgO-9.8% Unspecified 1673 Unspecified 7.8×10-6 [43]
Al2O3-19.1%FeO
47%SiO2-28%CaO-16%MgO-9%Al2O3 3 1673 CV (3.50 ± 0.18)×10-6 This work
CP (2.80 ± 0.22)×10-6
Table1  Collections for diffusion coefficient of Ni2+ in molten slag with similar composition and temperature
Fig.12  Chronopotentiograms for slag containing wNiO=3% with different cathodic currents
Fig.13  Plot of cathodic currents (I) vs It1/2 corresponding to Fig.12 (t—transition time)
Fig.14  Plots of E vs ln((t1/2-t1/2)/t1/2) with different cathodic currents corresponding to Fig.12
[1] Sun W Q, Cai J J, Mao H J. J Iron Steel Res Int, 2011; 18(6): 31
[2] Xu W Q, Li Y J, Zhu T Y, Cao W J. Chin J Process Eng, 2013; 13(1): 175 (徐文青, 李寅蛟, 朱廷钰, 曹万杰. 过程工程学报, 2013; 13(1): 175)
[3] Wang D H, Gmitter A J, Sadoway D R. J Electrochem Soc, 2011; 158(6): E51
[4] Kim H J, Paramore J, Allanore A, Sadoway D R. J Electrochem Soc, 2011; 158(10): E101
[5] Semkow K W, Rizzo R A, Haskin L A, Lindstrom D J. Geochim Cosmochim Acta, 1982; 46: 1879
[6] Colson R O, Haskin L A, Keedy C R. Geochim Cosmochim Acta, 1991; 55: 2831
[7] Strycker J D, Westbroek P, Temmerman E. J Non-Cryst Solids, 2004; 347: 231
[8] Colson R O, Keedy C R, Haskin L A. Geochim Cosmochim Acta, 1995; 59: 965
[9] Clau?en O, Rüssel C. J Non-Cryst Solids, 1997; 215: 68
[10] Clau?en O, Rüssel C. Solid State Ionics, 1998; 105: 289
[11] Medlin M W, Sienerth K D, Schreiber H D. J Non-Cryst Solids, 1998; 240: 193
[12] Clau?en O, Gerlach S, Rüssel C. J Non-Cryst Solids, 1999; 253: 76
[13] Takahashi K,?Miura Y. J Non-Cryst Solids,1980; 38-39(Part 2): 527
[14] Wang C Z. Solid Electrolyte and Chemical Sensors. Beijing: Metallurgical Industry Press, 2000: 259 (王常珍. 固体电解质和化学传感器. 北京: 冶金工业出版社, 2000: 259)
[15] Fray D J. Metall Mater Trans, 2003; 34B: 589
[16] Van Wijngaarden M J U T, Dippenaar R J, Van den Heever P M. J S Afr Inst Min Metall, 1987; 87: 269
[17] Gao Y M, Song J X, Zhang Y Q, Guo X M. Acta Metall Sin, 2010; 46: 277 (高运明, 宋建新, 张业勤, 郭兴敏. 金属学报, 2010; 46: 277)
[18] Ganesan R, Gnanasekaran T, Srinivasa R S. J Nucl Mater, 2006; 349: 133
[19] Iwase M, Ogura T, Tsujino R. Steel Res, 1994; 65: 90
[20] Turkdogan E T. Ironmaking Steelmaking, 2000; 27: 32
[21] Soral P, Pal U, Larson H R, Schroeder B. Metall Mater Trans, 1999; 30B: 307
[22] Kim W, Min D J, Lee Y S, Park J H. ISIJ Int, 2009; 49: 1882
[23] Lu X G, Zou X L, Li C H, Zhong Q D, Ding W Z, Zhou Z F. Metall Mater Trans, 2012; 43B: 503
[24] Gratz E S, Guan X, Milshtein J D, Pal U B, Powell A C. Metall Mater Trans, 2014; 45B: 1325
[25] Gao Y M, Wang B, Wang S B, Peng S. J Min Metall Sect, 2013; 49B: 49
[26] Mallika C, Sreedharan O M, Subasri R. J Eur Ceram Soc, 2000; 20: 2297
[27] Britten S C, Pal U B. Metall Mater Trans, 2000; 31B: 733
[28] Gao Y M, Jiang Y, Zhang H, Guo X M, Zhou G Z. J Wuhan Univ Sci Techenol, 2007; 30: 449 (高运明, 姜 英, 张 华, 郭兴敏, 周国治. 武汉科技大学学报, 2007; 30: 449)
[29] Wang S B. Master Thesis, Wuhan University of Science and Technology, 2013 (王少博. 武汉科技大学硕士学位论文, 2013)
[30] Jaccoud A, Fóti G, Comninellis C. Electrochim Acta, 2006; 51: 1264
[31] Wang G W, Li H P, Xu L P, Zhang L, Zhang Y Q, Dou J. J Univ Sci Technol Beijing, 2010; 32: 67 (王光伟, 李和平, 徐丽萍, 张 磊, 张艳清, 窦 静. 北京科技大学学报, 2010; 32: 67)
[32] Bale C W, Chartrand P, Degterov S A. Calphad, 2002; 26: 189
[33] Okamoto H. J Phase Equilib Diffus, 2007; 28: 495
[34] Fujishima A,Aisawa M,Inoue T,translated by Chen Z,Yao J N. Experimental Methods of Electrochemistry. Beijing: Peking University Press, 1995: 156 (Fujishima A,Aisawa M,Inoue T著,陈 震,姚建年译. 电化学测定方法. 北京: 北京大学出版社, 1995: 156)
[35] Suk M O, Park J H. J Am Ceram Soc, 2009; 92: 717
[36] Guan C S, Duan S Z, Wang X D. Chin J Nonferrous Met, 1996; 6: 51 (管从胜, 段淑贞, 王新东. 中国有色金属学报, 1996; 6: 51)
[37] Ghallali H E, Groult H, Barhoun A, Draoui K, Krulic D, Lantelme F. Electrochim Acta, 2009; 54: 3152
[38] Guo Q W,Wang G S,Guo G C. Binary Phase Atlas of Common Nonferrous Metals. Beijing: Chemical Industry Press, 2009: 120 (郭青蔚,王桂生,郭庚辰. 常用有色金属二元合金相图集. 北京: 化学工业出版社, 2009: 120)
[39] Massot L, Chamelot P, Taxil P. Electrochim Acta, 2005; 50: 5510
[40] Hamela C, Chamelotb P, Laplace A. Electrochim Acta, 2007; 52: 3995
[41] Wu Y K, Xu Z G, Chen S, Wang L J, Li G X. Rare Met, 2011; 30: 8
[42] Chen J X. Handbook of Diagrams and Data in Common Use for Steelmaking. 2nd Ed., Beijing: Metallurgical Industry Press, 2010: 281 (陈家祥. 炼钢常用图表数据手册. 第2版, 北京: 冶金工业出版社, 2010: 281)
[43] Zhang J Y. Physical Chemistry of Metallurgy. Beijing: Metallurgical Industry Press, 2004: 336 (张家芸. 冶金物理化学. 北京: 冶金工业出版社, 2004: 336)
[44] Hamel C, Chamelot P, Taxil P. Electrochim Acta, 2004; 49: 4467
[45] Bard A J, Faulkner L R. Electrochemical Methods Fundamentals and Applications. 2nd Ed., New York: John Wiley & Sons Inc., 2001: 311
[46] Southampton Electrochemical Group,translated by Liu H T,Xu P D. Instrumental Methods in Electrochemistry. Shanghai: Fudan University Press, 1992: 63 (Southampton Electrochemical Group编,柳厚田,徐品弟译. 电化学中的仪器方法. 上海: 复旦大学出版社, 1992: 63 )
[47] Goto K S. In: Fine H A, Gaskell D R eds., Proc 2nd Int Symp on Metallurgical Slags and Fluxes, Lake Tahoe, Nevada: Metallurgical Society of AIME, 1984: 839
[1] CHENG Weili, GU Xiongjie, CHENG Shiming, CHEN Yuhang, YU Hui, WANG Lifei, WANG Hongxia, LI Hang. Discharge Performance and Electrochemical Behaviors of the Extruded Mg-2Bi-0.5Ca-0.5In Alloy as Anode for Mg-Air Battery[J]. 金属学报, 2021, 57(5): 623-631.
[2] Hongzhong YUAN,Zhiyong LIU,Xiaogang LI,Cuiwei DU. Influence of Applied Potential on the Stress Corrosion Behavior of X90 Pipeline Steel and Its Weld Joint in Simulated Solution of Near Neutral Soil Environment[J]. 金属学报, 2017, 53(7): 797-807.
[3] YAN Yongde, YANG Xiaonan, ZHANG Milin, WANG Li, XUE Yun, ZHANG Zhijian. STUDY ON PREPARATION OF Al-Li-Gd ALLOYS BY ELECTROCHEMICAL CODEPOSITION FROM CHLORIDE MELTS[J]. 金属学报, 2014, 50(8): 989-994.
[4] SUN Ting, SONG Renbo, YANG Fuqiang, LI Yaping, WU Chunjing. ABRASIVE WEAR BEHAVIOR OF LOWER BAINITE DUCTILE IRON IN CORROSION MEDIA[J]. 金属学报, 2014, 50(11): 1327-1334.
[5] ZHOU Hebing LIANG Man Lü Dongsheng XU Mengqing LI Weishan. ELECTROCHEMICAL BEHAVIORS OF ZINC–INDIUM ALLOY ELECTROPLATING IN ALKALINE SOLUTIONS[J]. 金属学报, 2011, 47(8): 1055-1060.
[6] KUANG Wenjun WU Xinqiang HAN En-Hou. EFFECT OF Ni2+ IN OCCLUDED VOLUME ON THE OXIDATION BEHAVIOR OF 304 STAINLESS STEEL IN HIGH TEMPERATURE WATER[J]. 金属学报, 2011, 47(7): 927-931.
[7] ZHANG Jian(Metallurgical Engineering School; University of Science and Technology Beijing; Beijing 100083). CONSISTENCY(OR SIMILARITY) OF THERMODYNAMIC PROPERTIES OF METALLURGICAL MELTS WITH THEIR PHASE DIAGRAMS[J]. 金属学报, 1998, 34(7): 742-752.
[8] WEI Jihe (Shanghai Univereity.of Technology);LIU Zongyuan(Xi'van Institute of Metallurgy Construction Engineering). STUDY ON OXYGEN TRANSFER THROUGH MOLTEN SLAGS OF CaF_2+Al_2O_3 AND CaF_2+Al_2O_3+CaO SYSTEMS FOR ESR[J]. 金属学报, 1994, 30(20): 350-360.
[9] DIAO Risheng;WANG Xiqing;WANG Huaiyong;ZHANG Rong;DU Hegui Iron and Steel Research Institute; Panzhihua Iron and Steel Company; Northeast University of Technology; Shenyang. CORRELATION OF ION-CLUSTER STRUCTURE WITH BULK VISCOSITY AND DENSITY OF TiO_2-BEARING MOLTEN SLAG[J]. 金属学报, 1992, 28(3): 55-59.
[10] LIU Huanming;DU Hong;YANG Zupan;LI Guodong;DU Kun Benxi Iron and Steel Company; Northeast University of Technology; Shenyang; Centrel Iron and Steel Research Institute; Ministry of Metallurgical Industry. Beijing. ACTIVITY OF TiO_2 IN MOLTEN BLAST FURNACE SLAG CONTAINING TITANIUM OXIDE[J]. 金属学报, 1992, 28(2): 47-51.
No Suggested Reading articles found!