Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (5): 593-598    DOI: 10.3724/SP.J.1037.2012.00702
Current Issue | Archive | Adv Search |
STABILIZATION AND CORROSION RESISTANCE UNDER HIGH-TEMPERATURE OF NANOSTRUCTURED CeO2/ZrO2-Y2O3 THERMAL BARRIER COATING
GONG Wenbiao1), LI Renwei1),  LI Yupeng1),SUN Daqian2), WANG Wenquan2)
1)Key Laboratory of Advanced Structrural Materials, Ministry of Education, Changchun University of Technology,Changchun 130012
2)School of Materials Science and Engineering, Jilin University, Changchun 130025
Cite this article: 

GONG Wenbiao, LI Renwei, LI Yupeng,SUN Daqian, WANG Wenquan. STABILIZATION AND CORROSION RESISTANCE UNDER HIGH-TEMPERATURE OF NANOSTRUCTURED CeO2/ZrO2-Y2O3 THERMAL BARRIER COATING. Acta Metall Sin, 2013, 49(5): 593-598.

Download:  PDF(1580KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Thermal barrier coating (TBC) systems are being used in thermal insulation components in the hot sections of gas turbines in order to increase operation temperature with better efficiency. The typical material of TBC is yttria stabilized zirconia (YSZ) because of its high thermal expansion coefficient, which closely matches that of the substrate, and low thermal conductivity. However, YSZ based TBC systems cannot be successfully applied due to hot corrosion problems caused by molten salts, such as Na, S and V, contained in low quality fuels. In recent years, nanostructured TBC attracted intense attentions due to their enhanced thermal physical properties, but the thermal stability and resistance to molten salt performance are rarely studied.As a new candidate TBC material, ceria and yttria stabilized zirconia currently looks to be promising. The purpose of this work was to obtain the better understanding of microstructure and molten salt corrosion capability of plasma-sprayed nanostructured CSZ coating and to provide some foundation for improving the properties of TBC. In this work, nano-sized ZrO2-8%Y2O3 (YSZ, mass fraction) and nano-YSZ doped with 25% of nanometer CeO2 (CeO2/ZrO2-8%Y2O3, CSZ) were deposited on GH30 superalloy surface through air plasma spray process (APS) to form a thermal barrier coating. The morphology and microstructure of the CSZ coating were characterized using FESEM and XRD. The grain size of CSZ coating under the following two conditions were examined, firstly, the CSZ coating was heated to 1100 ℃ and held for various durations, thenthe CSZ coating was heated for a fixed 10 h but up to various temperatures. Its corrosion resistance under high temperature molten Na2SO4 salt was also tested. The results showed that average grain size of CSZ coating grown from 45 to 63 nm under prolonged exposure to high temperature and CSZ has showed better corrosion resistance than YSZ coating with no m-ZrO2 phase precipitated at under prolonged high temperature at 900 ℃ in Na2SO4 salt corrosion.

Key words:  thermal barrier coating      plasma spray      nano-structure      stabilization under high temperature      molten salt corrosion     
Received:  23 November 2012     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00702     OR     https://www.ams.org.cn/EN/Y2013/V49/I5/593

[1] Cao X Q.  Material of Heat Barrier Coat. Beijing: Science Press, 2007: 2


(曹学强. 热障涂层材料. 北京: 科学出版社, 2007: 2)

[2] Evans A G, Mumm D R, Hutchinson J W, Meier G H, Pettit F S.  Prog Mater Sci, 2001; 46: 505

[3] Cao X Q, Vassen R, Stoever D.  J Eur Ceram Soc, 2004; 24: 1

[4] Clarke D R, Phillpot S R.  Mater Today, 2005; 6: 22

[5] Chwa S O, Ohmori A.  Surf Coat Technol, 2002; 153: 304

[6] Lima R S, Kucuk A, Berndt C C.  Mater Sci Eng, 2001; A313: 75

[7] Wang W Q, Sha C K, Sun D Q, Gu X Y.  Mater Sci Eng, 2006; A424: 1

[8] Liang B, Ding C X.  Surf Coat Technol, 2005; 197: 185

[9] Liang B, Ding C X.  J Inorg Mater, 2006; 21: 250

(梁波, 丁传贤. 无机材料学报, 2006; 21: 250)

[10] Racek O, Berndt C C, Guru D N, Heberlein J.  Surf Coat Technol, 2006; 201: 338

[11] Zhang Y J, Sun X F, Jin T, Zhao N R, Guan H R, Hu Z Q.  Acta Metall Sin, 2003; 39: 395

(张玉娟, 孙晓峰, 金涛, 赵乃仁, 管恒荣, 胡壮麒. 金属学报, 2003; 39: 395)

[12] Li H, Khor K A, Kumar R, Cheang P.  Surf Coat Technol, 2004; 182: 227

[13] Sun J, Zhang L L, Zhao D.  J Rare Earths, 2010; 28: 198

[14] Xu B S.  Nano Surface Engineering. Beijing: Chemical Industry Press, 2004: 14

(徐滨士. 纳米表面工程. 北京: 化学工业出版社, 2004: 14)

[15] Lee C H, Kim H K, Choi H S, Ahn H S.  Surf Coat Technol, 2000; 124: 1

[16] Zhu C, Li P, Javed A, Liang G Y, Xiao P.  Surf Coat Technol, 2012; 206: 3739

[17] Zhang C Y, Li M H, Sun X F, Gong S K, Guan H R, Hu Z Q.  J Chin Soc Corros Prot, 2002; 22: 111

(张重远, 李美姮, 孙晓峰, 宫声凯, 管恒荣, 胡壮麒. 中国腐蚀与防护学报, 2002; 22: 111)

[18] Park S Y, Kim J H, Kim M C, Song H S, Park C G.  Surf Coat Technol, 2005; 190: 357

[19] Srinivasan R, Merrilea J M.  Surf Coat Technol, 2002; 160: 187

[20] Gong W B, Li Y P, Liu W, Sun D Q, Wang W Q.  J Inorg Mater, 2010; 25: 860

(宫文彪, 李于鹏, 刘威, 孙大千, 王文权. 无机材料学报, 2010; 25: 860)

[21] Lima R S, Kucuka A, Berndt C C.  Surf Coat Technol, 2001; 135: 166

[22] Gong W B, Sun D Q, Sun X B, Liu W.  Trans Mater Heat Treat, 2007; 4: 125

(宫文彪, 孙大千, 孙喜兵, 刘威. 材料热处理学报, 2007; 4: 125)

[23] Gonw W B, Sha C K, Sun D Q, Wang W Q.  Surf Coat Technol, 2006; 201: 3109

[24] Lu K, Sui M L.  J Mater Sci Technol, 1993; 9: 419

[25] Sun X K, Gong H T, Sun M, Yang M C.  Mater Trans, 2003; 31A: 17

[26] Colaizzi J.  Int Powder Metall, 2001; 37: 45

[27] Wang Z B, Zhou C G, Xun H B, Gong S K.  Chin J Aeronaut, 2004; 2: 119

(王振波, 周春根, 徐惠彬, 宫声凯. 中国航空学报, 2004; 2: 119)

[28] Sodeoka S, Suzuki M, Inoue T, Ueno. In: Berndt C C, ed.,  The 9th National Thermal Spray Conference.

Ohio: Materials Park, ASM International, 1996: 311
[1] ZHAO Xiaofeng, LI Ling, ZHANG Han, LU Jie. Research Progress in High-Entropy Alloy Bond Coat Material for Thermal Barrier Coatings[J]. 金属学报, 2022, 58(4): 503-512.
[2] REN Yuan, DONG Xinyuan, SUN Hao, LUO Xiaotao. Oxide Cleaning Effect of In-Flight CuNi Droplet During Atmospheric Plasma Spraying by B Addition[J]. 金属学报, 2022, 58(2): 206-214.
[3] GUO Lei, GAO Yuan, YE Fuxing, ZHANG Xinmu. CMAS Corrosion Behavior and Protection Method of Thermal Barrier Coatings for Aeroengine[J]. 金属学报, 2021, 57(9): 1184-1198.
[4] LI Xiaoqian, WANG Fuguo, LIANG Aimin. Effect of Spraying Process on Microstructure and Tribological Properties of Ta2O5 In Situ Composite Nanocrystalline Ta-Based Coatings[J]. 金属学报, 2021, 57(2): 237-246.
[5] WAN Xiangliang, HU Feng, CHENG Lin, HUANG Gang, ZHANG Guohong, WU Kaiming. Influence of Two-Step Bainite Transformation on Toughness in Medium-Carbon Micro/Nano-Structured Steel[J]. 金属学报, 2019, 55(12): 1503-1511.
[6] Xiaoguang HOU,Engang WANG,Xiujie XU,Anyuan DENG,Wanlin WANG. EFFECT OF THERMAL BARRIER COATINGS ABOVE MOULD MENISCUS ON MOULD HEAT TRANSFER AND OSCILLATION MARK MORPHOLOGY OF STRANDS[J]. 金属学报, 2015, 51(9): 1145-1152.
[7] FU Chong, WANG Junbo, YANG Minge, HOU Jinli, DING Bingjun. MICROSTRUCTURE AND ELECTRICAL PROPERTIES OF Ag/(Sn0.8La0.2)O2 COATING PREPARED BY PLASMA SPRAYING[J]. 金属学报, 2013, 49(3): 325-329.
[8] XIANG Jianying CHEN Shuhai HUANG Jihua ZHAO Xingke ZHANG Hua. THERMAL SHOCK RESISTANCE OF La2(Zr0.7Ce0.3)2O7 THERMAL BARRIER COATING PREPARED BY ATMOSPHERIC PLASMA SPRAYING[J]. 金属学报, 2012, 48(8): 965-970.
[9] LIU Jing SHENG Hongfei ZHANG Baoshan PENG Liangming. PROPERTIES OF Ti3XC2(X=Al, Si) WITH PLASMA SPRAYED ZrO2 THERMAL BARRIER COATING[J]. 金属学报, 2011, 47(9): 1141-1146.
[10] XU Na ZHANG Jia HOU Wanliang QUAN Mingxiu LI Rongde CHANG Xinchun. INFLUENCE OF HEAT TREATMENT ON MICROSTRUCTURES AND ADHESIVE STRENGTH OF HIGH TEMPERATURE SOLID SELF–LUBRICANT COATING[J]. 金属学报, 2009, 45(8): 943-948.
[11] Ye Pan. TRIBOLOGICAL PROPERTIES OF PLASMA SPRAYED FeS COMPOSITE COATINGS MIXED WITH NANO-SiC[J]. 金属学报, 2008, 44(4): 463-466 .
[12] . MICROSTRUCTURE AND PROPERTIES OF Al2O3 CERAMIC COATING BY PLASMA SPRAYING AND LASER REMELTING ON MAGNESIUM ALLOY[J]. 金属学报, 2007, 43(5): 493-497 .
[13] ;. The nanocrystalline structures of Fe-Ni-P-B alloy solidified at large undercooling and the liquid Spinonal decomposition of alloy melt[J]. 金属学报, 2006, 42(8): 870-874 .
[14] CHEN Liqiang; GONG Shengkai; XU Huibin. INFLUENCE OF VERTICAL CRACKS ON FAILURE MECHANISM OF EB-PVD THERMAL BARRIER COATINGS DURING THERMAL CYCLING[J]. 金属学报, 2005, 41(9): 979-984 .
[15] WU Yingna; KE Peiling; SUN Chao; HUA Weigang; WANG Fuhui; WEN Lishi. NiCrAlY/NiAl/ZrO2-Y2O3 Thermal Barrier Coatings Obtained by Detonation Spraying[J]. 金属学报, 2004, 40(5): 541-545 .
No Suggested Reading articles found!