Please wait a minute...
金属学报  2009, Vol. 45 Issue (11): 1370-1377    
  论文 本期目录 | 过刊浏览 |
多晶Cu在双向加载下的后继屈服与塑性流动分析
石艳柯; 张克实; 胡桂娟
广西大学工程防灾与结构安全重点实验室; 南宁 530004
SUBSEQUENT YIELD AND PLASTIC FLOW ANALYSIS OF POLYCRYSTALLINE COPPER UNDER BIAXIAL LOADING
SHI Yanke; ZHANG Keshi; HU Guijuan
Key Laboratory of Disaster Prevention and Structural Safety; Guangxi University; Nanning 530004
引用本文:

石艳柯 张克实 胡桂娟. 多晶Cu在双向加载下的后继屈服与塑性流动分析[J]. 金属学报, 2009, 45(11): 1370-1377.
, . SUBSEQUENT YIELD AND PLASTIC FLOW ANALYSIS OF POLYCRYSTALLINE COPPER UNDER BIAXIAL LOADING[J]. Acta Metall Sin, 2009, 45(11): 1370-1377.

全文: PDF(1123 KB)  
摘要: 

采用晶体塑性理论并结合多晶集合体模型来研究多晶Cu的塑性变形, 用双向加载方式模
拟材料的双向应力状态和分段加载路径, 得到了材料的初始屈服面及在预剪切和预拉伸2种情况下
的后继屈服面. 通过对后继屈服面形状及其演化趋势的研究, 探讨了用晶体塑性理论分析多晶材料塑
性流动规律的方法. 结果表明: 后继屈服面的形状和是否出现尖角与屈服点的定义有关, 同时
还与π平面上的预加载方向有关; 通过对多晶集合体代表性单元的塑性流动方向与后继屈服面法向
的差异进行统计分析, 发现塑性流动的正交性不仅与屈服定义相关, 也与预加载方向有关.

关键词 多晶Cu晶体塑性后继屈服面塑性流动有限元模拟    
Abstract

The yield characteristic and the plastic flow direction of a polycrystal copper are investigated, in which the anisotropy and random orientation of each grain in the polycrystal are taken into account, while the microstructure evolvement and the slip deformation mechanism are also analyzed. Applying the crystal plasticity theory associated with representative volume element (RVE) of a polycrystal aggregate, which consists of 200 polyhedral grains with irregular shape and orientation, the plastic deformation of polycrystalline copper is calculated through applying biaxial load along different paths to the RVE aggregate, stage by stage to simulate the material's biaxial stress state and the sub-stage load path. Then the yield surface and the subsequent yield surface for the RVE under preloading are obtained by the simulation through FEM calculation with the user crystalline material subroutine. The calculation results of the subsequent yield surface shape and the plastic flow direction are resolved and are discussed further. According to the results of yield surface and plastic flow direction of the polycrystal RVE, it can be concluded that the corner may appear on the subsequent yield surface at the preload point and the corner's appearance is dependent on the yield definition and the preload direction on the π plane; the classical normality description for plastic flow is proved to be reasonable for the polycrystal aggregate but there is a difference between the flow direction and the surface normal vector, which is analyzed by statistical calculation, and the statistical difference between the plastic flow direction and the normal vector of subsequent yield surface is related with both the yield definition and direction of preloading.

Key wordspolycrystal copper    crystal plasticity    subsequent yield surface    plastic flow    finite element simulation
收稿日期: 2009-04-17     
ZTFLH: 

TG146

 
基金资助:

国家自然科学基金项目90815001和10662001, 广西省自然科学基金项目0832024, 广西大学科学基金项目和广西研究生教育创新计划项目105930901017资助

作者简介: 石艳柯, 男, 1983年生, 博士生

[1] Shiratori E, Ikegami K, Yoshida F. Bull JSME, 1976; 19: 877
[2] Shiratori E, Ikegami K, Yoshida F, Kaneko K, Koike S. Bull JSME, 1976; 19: 1122
[3] Phillips A, Lu W Y. J Eng Mater Technol, 1984; 106: 349
[4] Mazilu P, Meyers A. Arch Appl Mech, 1985; 55: 213
[5] Wu H C, Yeh W C. Int J Plast, 1991; 7: 803
[6] Naghdi P M, Essenburg F, Koff W. J Appl Mech, 1958; 25: 201
[7] Shiratori E, Ikegami K, Kaneko K. Bull JSME, 1974; 17: 1405
[8] Phillips A, Moon H. Acta Mech, 1977; 27: 91

 

[9] Ivey H J. J Mech Eng Sci, 1961; 3: 15
[10] Mair W M. Pugh H. J Mech Eng Sci, 1964; 6: 150
[11] Khan A S, Wang X W. Int J Plast, 1993; 9: 889
[12] Su L. Master Dissertation, Northwestern Polytechnical University, 2007
(苏莉. 硕士学位论文, 西北工业大学, 2007)
[13] Hashiguchi K. Int J Plast, 2005; 21: 321
[14] Hashiguchi K. Int J Plast, 1997; 13: 37
[15] Kuroda M, Tvergaard V. Acta Mater, 1999; 47: 3879
[16] Kuroda M, Tvergaard V. J Mech Phys Solids, 2001; 49: 1239
[17] Hill R, Rice J R. J Mech Phys Solids, 1972; 20: 401
[18] Asaro R J, Rice J R. J Mech Phys Solids, 1977; 25: 309
[19] Hutchinson J W. Proc R Soc London, 1970; 319A: 247
[20] Hutchinson J W. Proc R Soc London, 1976; 348A: 101
[21] Hirth J P, Lothe J. Theory of Dislocations. 2nd Ed., New York: John Wiley & Sons, 1982: 837
[22] Zhang K S. Acta Mech Sin, 2004; 36: 714
(张克实. 力学学报, 2004; 36: 714)
[23] Zhang K S, Wu M S, Feng R. Int J Plast, 2005; 21: 801
[24] Drucker D C. Proc First US Congress of Applied Mechanics, New York: ASME, 1951: 487

[1] 徐永生, 张卫刚, 徐凌超, 但文蛟. 铁素体晶间变形协调与硬化行为模拟研究[J]. 金属学报, 2023, 59(8): 1042-1050.
[2] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[3] 郭祥如, 申俊杰. 孪生诱发软化与强化效应的Cu晶体塑性行为模拟[J]. 金属学报, 2022, 58(3): 375-384.
[4] 郭昊函, 杨杰, 刘芳, 卢荣生. GH4169合金拘束相关的疲劳裂纹萌生寿命[J]. 金属学报, 2022, 58(12): 1633-1644.
[5] 李索, 陈维奇, 胡龙, 邓德安. 加工硬化和退火软化效应对316不锈钢厚壁管-管对接接头残余应力计算精度的影响[J]. 金属学报, 2021, 57(12): 1653-1666.
[6] 姜霖, 张亮, 刘志权. Al中间层和Ni(V)过渡层对Co/Al/Cu三明治结构靶材背板组件焊接残余应力的影响[J]. 金属学报, 2020, 56(10): 1433-1440.
[7] 李学雄,徐东生,杨锐. 双相钛合金高温变形协调性的CPFEM研究[J]. 金属学报, 2019, 55(7): 928-938.
[8] 马凯, 张星星, 王东, 王全兆, 刘振宇, 肖伯律, 马宗义. SiC/2009Al复合材料的变形加工参数的优化仿真研究[J]. 金属学报, 2019, 55(10): 1329-1337.
[9] 赵鹏越, 郭永博, 白清顺, 张飞虎. 基于微观结构的多晶Cu纳米压痕表面缺陷研究[J]. 金属学报, 2018, 54(7): 1051-1058.
[10] 文舒, 董安平, 陆燕玲, 祝国梁, 疏达, 孙宝德. GH536高温合金选区激光熔化温度场和残余应力的有限元模拟[J]. 金属学报, 2018, 54(3): 393-403.
[11] 刘佳琳, 王玉敏, 张国兴, 张旭, 杨丽娜, 杨青, 杨锐. SiC单纤维增强TC17复合材料横向拉伸性能研究[J]. 金属学报, 2018, 54(12): 1809-1817.
[12] 刘玉, 秦盛伟, 左训伟, 陈乃录, 戎咏华. 全淬透圆柱件淬火应力的有限元模拟及实验验证[J]. 金属学报, 2017, 53(6): 733-742.
[13] 李永奎, 权纯逸, 陆善平, 焦清洋, 李世键, 孙忠海. TA15钛合金薄壁焊接件热处理校形研究*[J]. 金属学报, 2016, 52(3): 281-288.
[14] 韩世伟, 石多奇, 杨晓光, 苗国磊. 微结构相关的高循环疲劳分散性计算方法研究*[J]. 金属学报, 2016, 52(3): 289-297.
[15] 陈守东,刘相华,刘立忠,宋孟. Cu极薄带轧制中滑移与变形的晶体塑性有限元模拟*[J]. 金属学报, 2016, 52(1): 120-128.