Please wait a minute...
金属学报  2012, Vol. 48 Issue (10): 1207-1214    DOI: 10.3724/SP.J.1037.2012.00353
  论文 本期目录 | 过刊浏览 |
相场法模拟两相多孔组织烧结
刘明治1,张瑞杰1,方伟1,章书周1,曲选辉1,2
1. 北京科技大学新材料技术研究院, 北京 100083
2. 北京科技大学新金属材料国家重点实验室, 北京 100083
PHASE FIELD SIMULATION OF SINTERING PROCESS IN BIPHASIC POROUS MATERIAL
LIU Mingzhi 1, ZHANG Ruijie 1, FANG Wei 1, ZHANG Shuzhou 1, QU Xuanhui 1,2
1. Institute of Advanced Materials and Technologies, University of Science and Technology Beijing, Beijing 100083
2. State Key Laboratory for Advanced Metal and Materials, University of Science and Technology Beijing, Beijing 100083
引用本文:

刘明治 张瑞杰 方伟 章书周 曲选辉. 相场法模拟两相多孔组织烧结[J]. 金属学报, 2012, 48(10): 1207-1214.

全文: PDF(1187 KB)  
摘要: 

建立了新的模拟两相多孔材料烧结过程的相场模型, 采用Cahn-Hillard方程和Allen-Cahn方程来控制相对密度场和长程取向场的变化, 通过分析相场方程的特点, 对模型进行数学处理得到一组相场模型的唯象系数, 建立了原子扩散系数与晶界扩散、表面扩散和体积扩散的函数关系式. 模拟结果表明: 该模型能够有效地模拟两相多孔材料的烧结过程, 通过分析模拟图像可以很好地观察到两相多孔材料的微观组织演化过程.

关键词 相场模型 扩散系数 唯象系数 两相多孔材料    
Abstract

Sintering is a process of bonding between solid particles which typically occurs under high temperature. Currently, simulation of sintering process is mainly concentrated on the single–phase polycrystalline materials. As there are a lot of materials which are biphasic porous system, it is of practical significance to simulate the microstructural evolution of biphasic porous system during sintering process. In this work, a new phase field model is established to simulate sintering process in biphasic porous system. The evolution of the component is governed by Cahn–Hilliard equation, while the orientation field by the time–dependent Allen–Cahn equation. A function is established to describe the relationship between atomic diffusion coefficient and grain boundary diffusion, surface diffusion and volume diffusion. A group of phenomenological coefficients are obtained by analyzing the characteristic of the phase–field model. The simulation results show that the new phase–field model can effectively simulate the sintering process in biphasic porous system. The formation and growth of sintering neck, the seal spheroidization and disappearance of pores as well as the mergence and growth of grains are observed during simulation. The sintering necks between the parent phase and the second phase grow very fast at the early stage of simulation, while at the late stage, because of the pinning effect, the growth rate of the sintering neck slows down obviously, pores become isolated by the grains, and its shape change from concave to convex, the relative small pores are eliminated, which leads to densification. As the sintering proceeds, the grain size of the second phase gradually decreases and the parent–phase grains are wrapped by the second–phase grains. Because of the pinning effect of the second phase, the migration rate of the grain boundary of the parent phase is restrained. The evolution course of pores depends largely on the interaction between the second phase and the pores.  The evolution rate of pores is quantitatively compared between the biphasic porous system and the single–phase system. In the case of biphasic porous system, the evolution rate of pores is slower than that in single–phase system. The simulating growth exponents of the parent phase are calculated with different volume fractions of the second phase. As the volume fractions of the second phase increase from 15% to 25%, the grain growth exponent changes from 2.9 to 3.4.

Key wordsphase–field model    diffusion coefficient    phenomenological coefficient    biphasic porous material
收稿日期: 2012-06-14     
基金资助:

国家重点基础研究发展计划资助项目 2011CB606306

作者简介: 刘明治, 男, 1986年生, 硕士生

[1] German R M. Sintering Theory and Practice. New York: Wiley, 1996: 1

[2] Coble R L. J Appl Phys, 1961; 32: 787

[3] Coble R L. J Appl Phys, 1961; 32: 793

[4] Deborah C B, John D G, Seong J P. Mater Trans, 2006; 37: 715

[5] Wang Y U. Acta Mater, 2006; 54: 953

[6] Chen L Q, Fan D. J Am Ceram Soc, 1996; 79: 1163

[7] Jing X N, Zhao J H, He L H. J Mater Sci Eng, 2003; 21: 170

(景晓宁, 赵建华, 何陵辉. 材料科学与工程学报, 2003; 21: 170)

[8] Krill C E III, Chen L Q. Acta Mater, 2002; 50: 3057

[9] Kazaryan A, Patton B R, Dregia S A, Wang Y. Phys Rev, 2001; 50B: 499

[10] Kazaryan A, Wang Y, Dregia S A, Patton B R. Acta Mater, 2002; 50: 2491

[11] Kazaryan A, Wang Y, Dregia S A, Patton B R. Phys Rev, 2000; 61B: 14275

[12] Kazaryan A, Wang Y, Dregia S A, Patton B R. Phys Rev, 2001; 63B: 4102

[13] Suwa Y, Saito Y, Onodera H. Scr Mater, 2006; 55: 407

[14] Lange F F, Eur J. J Am Ceram Soc, 2008; 28: 1509

[15] Fan D, Chen S P, Chen L Q, Voorhees P W. Acta Mater, 2002; 50: 1895

[16] Wang Y Z, Banerjee D, Su J C, Khachaturyan A G. Acta Mater, 1998; 46: 2985

[17] Tiaden J, Nestler B, Diepers H J, Steinbach I. Physica, 1998; 115D: 73

[18] Zhu J Z, Liu Z K, Vaithyanathan V, Chen L Q. Scr Mater, 2002; 46: 401

[19] Zhang W, Jin YW, Khachaturyan A G. Acta Mater, 2007; 55: 565

[20] Kazaryan A, Wang Y, Patton B R. Scr Metall, 1999; 41: 487

[21] Fan D, Chen L Q. Acta Mater, 1997; 45: 611

[22] Wang Y Z, Liu Y H. J Am Ceram Soc, 2000; 83: 2219

[23] Fan D. PhD Thesis, The Pennsylvania State University, 1996

[24] Cahn J W, Hilliard J E. J Chem Phys, 1958; 28: 258

[25] Allen S M, Cahn J W. Acta Metall, 1978; 27: 1085

[26] Kazushige S K. J Cryst Growth, 2002; 237: 144

[27] Kumar V, Fang Z Z, Fife P C. Mater Sci Eng, 2010; A528: 254

[28] Cahn J W, Allen S M. Acta Metall, 1962; 10: 789

[1] 孙正阳, 杨超, 柳文波. UO2烧结过程的相场模拟[J]. 金属学报, 2020, 56(9): 1295-1303.
[2] 赵宝军,赵宇宏,孙远洋,杨文奎,侯华. Mn含量对Fe-Cu-Mn合金纳米富Cu析出相影响的相场法研究[J]. 金属学报, 2019, 55(5): 593-600.
[3] 高英俊, 卢昱江, 孔令一, 邓芊芊, 黄礼琳, 罗志荣. 晶体相场模型及其在材料微结构演化中的应用[J]. 金属学报, 2018, 54(2): 278-292.
[4] 刘远荣,陈伟民,汤颖,杜勇,张利军. 实用型数值回归法在三元铝合金互扩散系数计算中的应用*[J]. 金属学报, 2016, 52(8): 1009-1016.
[5] 黄祖江, 周敏, 杨阳, 陈泉志, 唐仕光, 李伟洲. 阳极氧化铝膜中间层阻挡元素扩散研究*[J]. 金属学报, 2016, 52(3): 341-348.
[6] 卢艳丽,卢广明,胡婷婷,杨涛,陈铮. 晶体相场法研究Kirkendall效应诱发的相界空洞的形成和演变*[J]. 金属学报, 2015, 51(7): 866-872.
[7] 高英俊, 周文权, 邓芊芊, 罗志荣, 林葵, 黄创高. 晶体相场方法模拟高温应变作用的预熔化晶界的位错运动*[J]. 金属学报, 2014, 50(7): 886-896.
[8] 高英俊, 卢成健, 黄礼琳, 罗志荣, 黄创高. 晶界位错运动与位错反应过程的晶体相场模拟*[J]. 金属学报, 2014, 50(1): 110-120.
[9] 吴艳,宗亚平,张宪刚. 纳米晶AZ31镁合金显微组织演变的相场法模拟研究[J]. 金属学报, 2013, 49(7): 789-796.
[10] 韩国民,韩志强,Alan A. Luo,Anil K. Sachdev,柳百成. Mg-Al合金Mg17Al12连续析出相形貌的相场模拟[J]. 金属学报, 2013, 49(3): 277-283.
[11] 张金玲,冯芝勇,胡兰青,王社斌,许并社. 不同La含量AZ91合金的时效硬化行为[J]. 金属学报, 2012, 48(5): 607-614.
[12] 高英俊 罗志荣 黄礼琳 胡项英. 变形合金的亚晶组织演化的相场模型[J]. 金属学报, 2012, 48(10): 1215-1222.
[13] 陈业新 常庆刚. 20g纯净钢中氢陷阱对氢扩散系数的作用[J]. 金属学报, 2011, 47(5): 548-552.
[14] 杨涛 陈铮 董卫平. 应力诱发双位错组亚晶界湮没的晶体相场模拟[J]. 金属学报, 2011, 47(10): 1301-1306.
[15] 高运明 宋建新 张业勤 郭兴敏. 利用电化学方法测定高温银液中氧的扩散系数[J]. 金属学报, 2010, 46(3): 277-281.