Please wait a minute...
金属学报  2009, Vol. 45 Issue (4): 455-459    
  论文 本期目录 | 过刊浏览 |
Fe72.5Ga27.5磁致伸缩合金动态机电耦合系数K33
朱小溪;张天丽;蒋成保
北京航空航天大学材料科学与工程学院; 北京 100083
ELECTROMECHANICAL COUPLING COEFFICIENT (K33) OF Fe72.5Ga27.5 MAGNETOSTRICTIVE ALLOY
ZHU Xiaoxi; ZHANG Tianli; JIANG Chengbao
School of Materials Science and Engineering; Beihang University; Beijing 100083
引用本文:

朱小溪 张天丽 蒋成保. Fe72.5Ga27.5磁致伸缩合金动态机电耦合系数K33[J]. 金属学报, 2009, 45(4): 455-459.
, , . ELECTROMECHANICAL COUPLING COEFFICIENT (K33) OF Fe72.5Ga27.5 MAGNETOSTRICTIVE ALLOY[J]. Acta Metall Sin, 2009, 45(4): 455-459.

全文: PDF(589 KB)  
摘要: 

采用区熔定向凝固法制备目标成分为Fe72.5Ga27.5的磁致伸缩定向生长试样. 采用改进的交流阻抗法测定定向生长态及其淬火态(1000 ℃/3 h, W. Q.)试样的阻抗谐振频率谱, 求出不同偏振磁场和预压力情况下的动态机电耦合系数K33. 由于Fe--Ga合金的磁致伸缩性能比Tb--Dy--Fe巨磁致伸缩材料小一个数量级, 原有的测试方法不易得到Fe--Ga合金的K33. 本实验在拾取信号时采用了四线并接接线方式并将交流激励信号输入水平调整到0.5 A, 获得了稳定且明显的Fe--Ga合金阻抗谐振频率谱线. 实验结果表明: 定向生长试样在32.7 mT偏振磁场、无预压应力下K33为0.103; 淬火态试样在同样偏振磁场和无预压应力下
K33达到0.137. K33随外加偏振磁场的增大而减小, 随预压力的增大呈现先增大而后减小的趋势. 淬火态试样的K33较定向生长试样有明显提高. 外加偏振磁场和预压力对淬火态试样的K33的影响规律同定向生长试样一致.

关键词 Fe72.5Ga27.5合金 磁致伸缩 动态机电耦合系数K33 交流阻抗谐振谱    
Abstract

The electromechanical coupling coefficient (K33) is a crucial parameter to express the efficiency of the magnetostrictive alloy. Fe72.5Ga27.5 magnetostrictive oriented crystal has been prepared by zone melting unidirectional solidification. The K33 values of the directionally solidified sample and its quenched sample(1000℃/3 h, W. Q.) were determined by improved AC impedance resonance frequency testing method. The DC magnetic field was formed by the DC coil and the pre-pressure was given by the press-pack. Since the magnetostriction of Fe–Ga Alloy is less than that of the giant magnetostrictive material of Tb–Dy–Fe by 10 times, the K33 of Fe–Ga alloy cannot be determined by the traditional testing methods. In this paper, a 4–wire configuration connection was used to pickup the signal in experiment, and the AC excitation signal was adjusted to 0.5 A, so that the obvious and stable AC impedance curves of the Fe–Ga alloy were acquired. When the DC magnetic field is 32.7 mT and no compressive pre–stress is applied, the K33 values of the directionally solidified sample and quenched sample are 0.103 and 0.137, respectively. The K33 values of the two kinds of Fe72.5Ga27.5 magnetostrictive alloys decrease with increasing DC magnetic field, and increase at first then decrease with increasing pre–pressure, but the K33 value of the quenched sample always higher than that of the oriented sample.

Key wordsFe72.5Ga27.5 alloy      magnetostriction    electromechanical coupling coefficient (K33)    AC impedance resonance spectrum
收稿日期: 2008-09-12     
ZTFLH: 

TG132.2

 
基金资助:

国家自然科学基金项目50531010和新世纪优秀人才支持计划项目NCET--04--0165资助

作者简介: 朱小溪, 女, 1984年, 博士生

[1] Srisukhumbowornchai N, Guruswamy S. J Appl Phys, 2001; 90: 5680
[2] Clark A E, Hathaway K B, Wun–Fogle M, Restorff J B, Lograsso T A, Cullen J R. IEEE Trans Magn, 2001; 37: 2678
[3] Clark A E, Hathaway K B, Wun–Fogle M, Restorff J B, Lograsso T A, Keppens V M, Petculescu G, Taylor R A. J Appl Phys, 2003; 93: 8621
[4] Bai X B, Jiang C B, Gong S K. Chin J Mater Res, 2006; 20: 607
(白夏冰, 蒋成保, 宫声凯. 材料研究学报, 2006; 20: 607)
[5] Bai X B, Jiang C B, Gng S K. Acta Matell Sin, 2007; 43: 413
(白夏冰, 蒋成保, 宫声凯. 金属学报, 2007; 43: 413)
[6] Han Z Y. J Magn Mater Devices, 2007; 38: 19
(韩志勇. 磁性材料及器件, 2007; 38: 19)
[7] Malkinski L M. J Magn Magn Mater, 1995; 140-144: 2169
[8] Zhu H Q, Liu J G, Wang X R, Xing Y H, Zhang H P. J Alloys Compd, 1997; 258: 49
[9] Wakiwaka H, Nagumo M. IEEE Trans Magn, 1992; 28:2208
[10] Han Z Y, Gao X X, Zhang M C, Zhou S Z. Prog Nat Sci,2003; 13: 655
[11] Jiang C B, Zhao Y, Xu H B. Acta Metall Sin, 2004; 40:378
(蒋成保, 赵岩, 徐惠彬. 金属学报, 2004; 40: 378)
[12] Liu G D, Liu L B, Liu Z H, Zhang M, Chen J L, Li J Q, Wu G H, Li Y X, Qu J P, Chin T S. Appl Phys Lett, 2004; 84: 2124
[13] Zhou J K, Li J G. Appl Phys Lett, 2008; 92: 141915
[14] Zhang M C, Gao X A, Jiang H L, Qiao Y, Zhou S Z. J Alloys Compd, 2007; 431: 42

[1] 储双杰,杨勇杰,和正华,沙玉辉,左良. 基于磁畴结构交互作用的激光刻痕取向硅钢磁致伸缩系数计算[J]. 金属学报, 2019, 55(3): 362-368.
[2] 付全,沙玉辉,和正华,雷蕃,张芳,左良. Fe81Ga19二元合金薄板的再结晶织构与磁致伸缩性能[J]. 金属学报, 2017, 53(1): 90-96.
[3] 刘印,刘铁,王强,王慧敏,王丽,赫冀成. 强磁场热处理对TbFe2和Tb0.27Dy0.73Fe1.95合金晶体取向、微观形貌和磁致伸缩性能的影响[J]. 金属学报, 2013, 49(9): 1148-1152.
[4] 姚占全,赵增祺,江丽萍,郝宏波,吴双霞,张光睿,杨建东. 稀土Ce添加对Fe83Ga17合金微结构和磁致伸缩性能的影响[J]. 金属学报, 2013, 49(1): 87-91.
[5] 李晓诚 丁雨田 胡勇. Tb0.3Dy0.7Fe1.95-xTix (x=0, 0.03, 0.06, 0.09) 合金的微观组织与磁致伸缩性能[J]. 金属学报, 2012, 48(1): 11-15.
[6] 陈立彪 朱小溪 李川 刘敬华 蒋成保 徐惠彬. Fe81Ga19合金<001>取向单晶生长及磁致伸缩性能[J]. 金属学报, 2011, 47(2): 169-172.
[7] 崔跃 蒋成保 徐惠彬. Tb-Dy-Fe-Co合金本征磁致伸缩性能[J]. 金属学报, 2011, 47(2): 214-218.
[8] 张昌盛 马天宇 严密 裴永茂 高旭 . <110>取向Tb0.36Dy0.64(Fe0.85Co0.15)2合金的磁机械阻尼特性[J]. 金属学报, 2009, 45(6): 749-753.
[9] 贾傲 张天丽 孟皓 蒋成保. 粘结巨磁致伸缩颗粒复合材料的磁致伸缩性能及涡流损耗[J]. 金属学报, 2009, 45(12): 1473-1478.
[10] 高学绪 李纪恒 朱洁 包小倩 贾俊成 张茂才 . 气体雾化制备Fe-Ga合金粉末的微结构及磁致伸缩性能[J]. 金属学报, 2009, 45(10): 1267-1271.
[11] 李纪恒; 高学绪; 朱洁; 张茂才; 何承先 . 轧制Fe-Ga合金的织构及磁致伸缩[J]. 金属学报, 2008, 44(9): 1031-1034 .
[12] 章愫; 刘敬华; 蒋成保; 徐惠彬 . 熔体快淬法制备Fe81Ga19磁致伸缩合金[J]. 金属学报, 2008, 44(3): 361-364 .
[13] 白夏冰; 马天宇; 蒋成保 . <110>取向Tb0.36Dy0.64(Fe0.85Co0.15)2合金的磁机械耦合系数[J]. 金属学报, 2008, 44(10): 1231-1234 .
[14] 许云伟; 马天宇; 张晶晶; 严密 . 反铁磁Fe1-xMnx(0.30≤x≥0.55) 合金的磁致伸缩[J]. 金属学报, 2008, 44(10): 1235-1237 .
[15] 马天宇 ; 严密; 王庆伟 . <110>取向Tb--Dy--Fe--Co 合金棒的磁致伸缩均匀性[J]. 金属学报, 2007, 43(7): 688-692 .