Please wait a minute...
金属学报  2008, Vol. 44 Issue (8): 949-955     
  论文 本期目录 | 过刊浏览 |
超弹性NiTi合金相变棘轮行为的实验研究
阚前华;康国政;钱林茂;刘宇杰;王海林
西南交通大学应用力学与工程系
EXPERMENTAL STUDY ON TRANSFORMATION RATCHETING OF SUPERELASTIC NITI ALLOY
Qian-Hua Kan;Guozheng Kang;;;
西南交通大学
引用本文:

阚前华; 康国政; 钱林茂; 刘宇杰; 王海林 . 超弹性NiTi合金相变棘轮行为的实验研究[J]. 金属学报, 2008, 44(8): 949-955 .
, , , , . EXPERMENTAL STUDY ON TRANSFORMATION RATCHETING OF SUPERELASTIC NITI ALLOY[J]. Acta Metall Sin, 2008, 44(8): 949-955 .

全文: PDF(1309 KB)  
摘要: 超弹性NiTi合金在应力控制循环载荷下会产生峰值应变和谷值应变的循环 累积-相变棘轮行为. 室温实验表明, 峰值应变和谷值应变的演化规 律与加载应力水平和加载波形密切相关; 同时, 在循环加载过程中, 随着 循环周次的增加, 奥氏体名义弹性模量减小, 马氏体名义弹性模量增大, 奥 氏体向马氏体转变的名义开始应力下降, 耗散能降低, 并在一定的循环次数 下趋于一个稳定值. 研究得到了一些有助于后续建立超弹性循环本构模型 的结论.
关键词 NiTi合金超弹性循环变形相变棘轮    
Abstract:ABSTRACT: Under stressing-controlled cyclic loading, the cyclic accumulation of peak strain and valley strain, denoted as transformation ratcheting, takes place in superelastic NiTi alloy. In this work, the transformation ratcheting behavior of superelastic NiTi alloy and its dependence upon load condition were studied by experiments at room temperature. The evolution rules of peak strain, valley strain, nominal elastic modulus and transition stress under different cyclic loading cases were discussed. It is shown that the alloy presents apparent transformation ratcheting, and the value of transformation ratcheting strain and its evolution rule depend greatly upon the applied stress amplitude, mean stress and loading charts; in the meantime, the nominal elastic modulus of austenite, nominal starting stress for the transformation from austenite to martensite and dissipation energy decrease, while nominal elastic modulus of martensite increases with the increase in the number of cycles, and then reach a steady state after certain cycles. Some significant conclusions are obtained, which are useful to establish a constitutive model describing the transformation ratcheting of the material.
Key wordsNiTi alloy    superelasticity    cyclic loading    transformation ratcheting
收稿日期: 2007-11-23     
ZTFLH:  TG146.1  
[1]Kahn H,Huff M A,Heuer J.Micromech Microeng,1998; 8:213
[2]Fu Y,Du H,Zhang S,Hu M.Sens Actuats,2004;112A: 395
[3]Yong;L,Xeliang X,Humbeeck J V.Mater Sci Eng,1999; A273-275:673
[4]Tanaka K,Nishimura F,Hayashi T,Lexcellent C.Mech Mater,1995;19:28
[5]Lexcellent C,Bourbon G.Mech Mater,1996;24:59
[6]Pieczyska E,Gadaj S,Nowacki W K,Hoshio K,Makino Y,Tobushi H.Sci Technol.Adv Mater,2005;6:889
[7]Liu Y,Xie Z,Humbeeck J V.Mater Sci Eng,1999;A273- 275:673
[8]Namat-Nasser S,Guo W G.Mech Mater,2006;38:463
[9]Strnadel B,Ohashi S,Ohtsuka H,Ishihara T,Miyazaki S. Mater Sci Eng,1995;A202:148
[10]Auricchio F,Marfia S,Sacco E.Comput Struct,2003;81: 2301
[11]Zaki W,Moumni Z.J Mech Phys Solids,2007;55:2427
[12]Auricchio F,Reali A,Stefanelli U.Int J Plast,2007;23: 207
[13]Lexcellent C,Leclercq S,Gabry B,Bourbon G.Int J Plast, 2000;16:1155
[14]Auricchio F,Marfia S,Sacco E.Comput Struct,2003;81: 2301
[15]Kang G Z,Gao Q.Mech Mater,2002;34:809
[16]Kang G Z,Gao Q,Cai L X.J Mater Sci Technol,2002; 18:13
[17]Kang G Z,Gao Q.Mech Mater,2004;36:299
[18]Kang G Z,Sun Y F,Zhang J,Kan Q H.Acta Metall Sin, 2005;41:277 (康国政,孙亚芳,张娟,阚前华.金属学报,2005;41:277)
[19]Kan Q H,Kang G Z,Zhang J,Liu Y J.Acta Metall Sin, 2005;41:963 (阚前华,康国政,张娟,刘宇杰.金属学报,2005;41:963)
[20]Kang G Z,Kan Q H,Zhang J,Sun Y F.Int d Plast,2006; 22:858
[21]Qian L M,Sun Q P,Xiao X D.Wear,2006;260:509
[1] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[2] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[3] 陈雷, 郝硕, 邹宗园, 韩舒婷, 张荣强, 郭宝峰. TRIP型双相不锈钢Fe-19.6Cr-2Ni-2.9Mn-1.6Si在循环变形条件下的力学特性[J]. 金属学报, 2019, 55(12): 1495-1502.
[4] 韦昭召, 马骁, 张新平. NiTi合金B2-B19′马氏体相变晶体学的拓扑模拟研究[J]. 金属学报, 2018, 54(10): 1461-1470.
[5] 车欣, 梁兴奎, 陈丽丽, 陈立佳, 李锋. Al-9.0%Si-4.0%Cu-0.4%Mg(-0.3%Sc)合金的显微组织及其低周疲劳行为*[J]. 金属学报, 2014, 50(9): 1046-1054.
[6] 张思倩, 吴伟, 陈丽丽, 车欣, 陈立佳. 热处理对挤压变形Mg-7%Zn-0.6%Zr-0.5%Y合金低周疲劳行为的影响*[J]. 金属学报, 2014, 50(6): 700-706.
[7] 朱祎国,张杨,赵聃. 多晶NiTi形状记忆合金相变的细观力学本构模型[J]. 金属学报, 2013, 49(1): 123-128.
[8] 贺志荣 王启 邵大伟. 时效对Ti-50.8Ni-0.3Cr形状记忆合金组织和超弹性的影响[J]. 金属学报, 2012, 48(1): 56-62.
[9] 王启 贺志荣 王永善 杨军. 退火温度和应力-应变循环对Ti-Ni-Cr形状记忆合金超弹性的影响[J]. 金属学报, 2010, 46(7): 800-804.
[10] 贺志荣 王芳. 热处理对Ti-Ni-Cr低温超弹性合金相变行为的影响[J]. 金属学报, 2010, 46(3): 329-333.
[11] 姜庆伟 刘印 王尧 晁月盛 李小武. 超细晶铜在退火与高温变形条件下微观结构的不稳定性研究[J]. 金属学报, 2009, 45(7): 873-879.
[12] 游素琴 崔玉亭 武亮 孔春阳 马勇 杨晓红 潘复生. Ni53.2Mn22.6Ga24.2单晶的磁控形状记忆效应和磁控超弹性特性[J]. 金属学报, 2009, 45(3): 351-355.
[13] 贺志荣 . Ti-50.8Ni-0.3Cr超弹性合金的相变与形变特性[J]. 金属学报, 2008, 44(9): 1076-1080 .
[14] 李大圣; 张宇鹏; 熊志鹏; 张新平 . 轻质高强NiTi形状记忆合金制备及其超弹性行为[J]. 金属学报, 2008, 44(8): 995-1000 .
[15] 张红钢; 何勇; 刘雪峰; 谢建新 . NiTi形状记忆合金热压缩变形行为及本构关系[J]. 金属学报, 2007, 43(9): 930-936 .