Please wait a minute...
金属学报  2007, Vol. 43 Issue (11): 1195-1206     
  论文 本期目录 | 过刊浏览 |
板坯连铸机内钢液流动和夹杂物碰撞长大行为
雷洪 赫冀成
东北大学材料电磁过程研究教育部重点实验室
Fluid Flow and Inclusion's Collision--Growth in the Slab Continuous Casting Mold
LEI Hong; HE Jicheng
Key Laboratory of Electromagnetic Processing of Materials; Ministry of Education; Northeastern University
引用本文:

雷洪; 赫冀成 . 板坯连铸机内钢液流动和夹杂物碰撞长大行为[J]. 金属学报, 2007, 43(11): 1195-1206 .
, . Fluid Flow and Inclusion's Collision--Growth in the Slab Continuous Casting Mold[J]. Acta Metall Sin, 2007, 43(11): 1195-1206 .

全文: PDF(1067 KB)  
摘要: 采用数值模拟方法研究了板坯连铸机内钢液流动、夹杂物碰撞聚合行为。由于凝固坯壳的向下运动和上升流股的相互作用,在结晶器窄面附近形成一个角部涡。此角部涡的存在使夹杂物的浓度、数量密度和特征尺寸的分布在结晶器窄面附近产生一个极值。数值结果还表明钢液的对流输运是影响夹杂物分布的重要因素。由于钢液上部回流区的存在,夹杂物分布显现环状特征。在结晶器下部,由于壁面效应和夹杂物碰撞聚合,夹杂物在中心截面上形成“W”形分布,在水平截面上形成“8”字形分布;而在铸坯窄面和水口下方对称面处,夹杂物形成“V”形分布。
关键词 夹杂物、碰撞、聚合、连铸    
Abstract:A mathematical model was developed to study fluid flow and inclusion collision and growth in the slab continuous caster. Due to the interaction of the moving solidifying shell and the upward flow, a small corner-vortex appears near the narrow face of the mold. Such a corner-vortex leads to the peak value of inclusion’s concentration, number density and characteristic radius near the narrow face. Numerical results also showed that convective transfer of molten steel is the key factor to influence the inclusion distribution. In the upper recirculation zone, the inclusion has the annular distribution. Wall effect and inclusion’s collision and aggregation are two important factors. Under the mold, the inclusion has the “W” shape distribution in the middle plane and the “8” shape distribution in the horizontal plane. And the inclusion has the “V” shape at the narrow face and symmetry plane under the nozzle.
Key wordsInclusion    Collision    Aggregation    Continuous casting
收稿日期: 2007-03-28     
ZTFLH:  TF777  
[1]Zhang L,Taniguchi S,Cai K.Metall Mater Trans,2000; 31B:253
[2]Nakanishi K,Szekely J.Trans ISIJ,1975;15:522
[3]Miki Y,Shimada Y,Thomas B G,Denissov A.lronmaking Steelmaking,1997;24(8):31
[4]Zhang L.Steel Res Int,2005;76:784
[5]Lei H,Zhu M Y,He J C.J Iron Steel Res Int,2003;10(2): 21
[6]Lei H,Zhu M Y,He J C.Chin J Process Eng,2001;1(2): 138 (雷洪,朱苗勇,赫冀成.过程工程学报,2001;1:138)
[7]Tacke K H,Ludwig J G.Steel Res,1987;58:262
[8]Joo S,Han J W,Guthrie R I L.Metall Trans,1993;24B: 767
[9]Javurek M,Gittler P,Rossler R,Kaufmann B,Preblinger H.Steel Res Int,2005;76:64
[10]Shirabe K,Szekely J.Trans Iron Steel Inst Jpn,1983;23: 465
[11]Sinha A K,Sahai Y.ISIJ Int,1993;33:556
[12]Zhang B W,Deng K,Lei Z Z.Ren Z M.Acta Metall Sin, 2004;40:623 (张邦文,邓康,雷作胜,任忠鸣,金属学报;2004,40:623)
[13]Lei H,He J C.J Non-Cryst Solids,2006;352:3772
[14]Zhao L G,Liu K.J Ree Iron Steel,2002;14(6):19 (赵连刚,刘坤.钢铁研究学报,2002;14(6):19)
[15]Lei H,Wang L,Wu Z,Fan J.ISIJ Int,2002;42:717
[16]Zhu M,Zhen S,Huang Z,Gu W.Steel Res Int,2005;76: 718
[17]Miki Y,Thomas B G.Metall Mater Trans,1999;30B:639
[18]Tozawa H,Kata Y,Sorimachi K,Nakanishi T.ISIJ Int, 1999;39:426
[19]Saffman P G,Turner J S.J Fluid Meeh,1956;1:16
[20]Thomas B G,Mika L J,Najjar F M.Metall Trans,1990; 21B:387
[21]Thomas B G,Huang X,Sussman R C.Metall Mater Trans,1994;25B:527
[22]Bouris D,Bergeles G.Metall Mater Trans,1998;29B:614
[23]Lei H,Jin Y,Zhu M,He J.J Mater Sci Technol,2002; 18:403
[24]Lu L F,Lu S P,Zhou S Q,Ren Q,Li D,Kang R M,Wu W D.J Chongqing Univ,2006;29(2):72 (刘林飞,刘守平,周上祺,任勤,李丁,康人木,吴文东,重庆大学学报,2006;29(2):72)
[25]Lan Y G.Zou Z S,Jiang M F,Yao Y K.Spec Steel,2003; 24(4):48 (兰岳光,邹宗树,姜茂发,姚永宽.特殊钢,2003;24(4):48)
[26]Liu Y R,Song J X,Cheng N L.Steelmaking,2003;19(2): 36 (刘友荣,宋景欣,程乃良.炼钢,2003;19(2):36)
[1] 刘中秋, 李宝宽, 肖丽俊, 干勇. 连铸结晶器内高温熔体多相流模型化研究进展[J]. 金属学报, 2022, 58(10): 1236-1252.
[2] 郭中傲, 彭治强, 柳前, 侯自兵. 高碳钢连铸坯大区域C元素分布不均匀度[J]. 金属学报, 2021, 57(12): 1595-1606.
[3] 唐海燕, 李小松, 张硕, 张家泉. 基于恒过热控制的感应加热中间包内钢水的流动与传热[J]. 金属学报, 2020, 56(12): 1629-1642.
[4] 李亚强, 刘建华, 邓振强, 仇圣桃, 张佩, 郑桂芸. 15CrMoG钢包晶凝固特征与机制[J]. 金属学报, 2020, 56(10): 1335-1342.
[5] 蔡来强, 王旭东, 姚曼, 刘宇. 连铸圆坯非均匀传热/凝固行为的无网格计算方法[J]. 金属学报, 2020, 56(8): 1165-1174.
[6] 曹丽华, 陈胤伯, 史起源, 远杰, 刘志权. 合金元素对中温Sn-Ag-Cu焊料互连组织及剪切强度的影响[J]. 金属学报, 2019, 55(12): 1606-1614.
[7] 郭军力, 文光华, 符姣姣, 唐萍, 侯自兵, 谷少鹏. 冷却速率对包晶钢凝固过程中包晶转变收缩的影响[J]. 金属学报, 2019, 55(10): 1311-1318.
[8] 吴春雷,李德伟,朱晓伟,王强. 电磁旋流水口连铸技术对小方坯凝固组织形貌和宏观偏析的影响[J]. 金属学报, 2019, 55(7): 875-884.
[9] 刘灿帅,田朝晖,张志明,王俭秋,韩恩厚. 地质处置低氧过渡期X65低碳钢腐蚀行为研究[J]. 金属学报, 2019, 55(7): 849-858.
[10] 何明, 李显亮, 王情伟, 王连钰, 王强. 磁屏蔽对电磁出钢系统中感应加热电源功率损耗的影响[J]. 金属学报, 2019, 55(2): 249-257.
[11] 魏铖, 柯常波, 马海涛, 张新平. 基于序参量梯度的改进相场模型及对大尺度体系马氏体相变的模拟研究[J]. 金属学报, 2018, 54(8): 1204-1214.
[12] 卢云飞, 阳靖峰, 董俊华, 柯伟. NiCu低合金钢在含Cl-的除氧NaHCO3溶液中的腐蚀行为研究[J]. 金属学报, 2015, 51(4): 440-448.
[13] 颜永得, 杨晓南, 张密林, 李星, 王丽, 薛云, 张志俭. 氯化物熔盐体系共电沉积法制备Al-Li-Gd合金的研究*[J]. 金属学报, 2014, 50(8): 989-994.
[14] 文怀梁, 董俊华, 柯伟, 陈文娟, 阳靖峰, 陈楠. 模拟高放废物地质处置环境下重碳酸盐浓度对低碳钢活化/钝化腐蚀倾向的影响*[J]. 金属学报, 2014, 50(3): 275-284.
[15] 熊缨 程利霞. 挤压AZ31B镁合金多轴疲劳寿命预测[J]. 金属学报, 2012, 48(12): 1446-1452.