Please wait a minute...
金属学报  2005, Vol. 41 Issue (3): 271-276     
  论文 本期目录 | 过刊浏览 |
异步轧制对表面纳米化316L不锈钢组织和性能的影响
吕爱强;张洋;李瑛;刘刚;刘春明
东北大学材料与冶金学院;沈阳110004;
Effect of cross shear rolling on microstructure and properties of surface nanocrystallized 316L stainless steel
LÜ Aiqiang; ZHANG Yang; LI Ying; LIU Gang; LIU Chunming
School of Materials and Metallurgy; Northeastern University; Shenyang 110004;Shenyang National Laboratory for Materials Science; Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110016
引用本文:

吕爱强; 张洋; 李瑛; 刘刚; 刘春明 . 异步轧制对表面纳米化316L不锈钢组织和性能的影响[J]. 金属学报, 2005, 41(3): 271-276 .
, , , , , . Effect of cross shear rolling on microstructure and properties of surface nanocrystallized 316L stainless steel[J]. Acta Metall Sin, 2005, 41(3): 271-276 .

全文: PDF(444 KB)  
摘要: 采用表面机械研磨处理(SMAT)在316L不锈钢上制备出纳米结构表层,然后在室温对其进行80%形变量的异步轧制(CSR),研究了CSR处理后表层组织和性能的变化. 结果表明:经过60 min SMAT后,样品表面形成了一定厚度的纳米晶层,晶粒尺寸为10—30 nm. 对其进行80%形变量的CSR后,表层组织仍为纳米晶组织,但纳米晶尺寸更加均匀、细小(为5—15 nm),表面粗糙度显著下降;纳米表层硬度略有提高,但基体硬度显著提高;在0.05 mol/L H2O4+0.25 mol/L Na2SO4腐蚀介质中的耐腐蚀性能比SMAT后的样品有明显改善, 但均低于原基材.
关键词 表面机械研磨 异步轧制 316L不锈钢    
Abstract:Nanostructured layer with a certain thickness and grain size of 10-30 nm was synthesized on a 316L stainless steel by surface mechanical attrition treatment (SMAT) for 60 min. The change of microstructure and properties in the surface layer after cross shear rolling (CSR, 80\% reduction) was investigated. The results show that the nanocrystalline structure was still maintained, however, the grain size became finer (5-15 nm) and more uniform and the surface roughness was remarkably reduced. The hardness in the surface layer was slightly increased, but that of the matrix was remarkably increased. The corrosion resistance in 0.05 mol/L H2SO4+0.25 mol/L Na2SO4 solution was improved, but still lower than that of the matrix.
Key wordssurface mechanical attrition treatment (SMAT)    cross shear rolling (CSR)    316L stainless
收稿日期: 2004-04-29     
ZTFLH:  TG113.1  
[1] Wang Z B, Yong X P, Tao N R, Li S, Liu G, Lu J, Lu K. Acta Metall Sin, 2001; 37: 1251 (王镇波,雍兴平,陶乃容,李曙,刘刚,吕坚,卢柯. 金属学报,2001;37:1251)
[2] Zhang H W, Liu G, Hei Z K, Lu J, Lu K. Acta Metall Sin, 2003; 39: 342 (张洪旺,刘刚,黑祖昆,吕坚,卢柯.金属学报,2003; 39:342)
[3] Tao N R, Wang Z B, Tong W P, Sui M L, Lu J, Lu K. Acta Mater, 2002; 50: 4603
[4] Lu K, Lu J. J Mater Sci Technol, 1999; 15: 193
[5] Liu G, Lu J, Lu K. Mater Sci Eng, 2000; A286: 91
[6] Lu K, Lu J. Mater Sci Eng, 2004; A375-377: 38
[7] Kim S H, Aust K T, Erb U, Gonzalez F, Palumbo G. Scr Mater, 2003; 48: 1379
[8] Palumbo G, Gonzalez F, Brenneastuhl A M, Erb U, Shmayda W, Lichtenberger P C. Nanoatruct Mater, 1997; 9: 737
[9] Zeiger W, Schneider M, Scharnweber D, Worth H. Nanos- truct Mater, 1995; 6: 1013
[10] Zhu Q. Iron Steel, 1980; 15: 1 (朱泉.钢铁,1980;15:1)
[11] Tong W P, Tao N R, Wang Z B, Lu J, Lu K. Science, 2003; 299: 686
[12] Olson G B, Cohen M. Metall Trans, 1975; 6A: 791
[13] Von Swygenhoven H, Farkas D, Caro A. Phys Rev, 2000; 62B: 831
[14] Devine T M, Briant C L, Drummond B J. Scr Metall, 1980; 14: 1175
[15] Matula M, Hyspecka L, Svoboda M, Vodarek V, Dagbert C, Galland J, Stonawska Z, Tuma L. Mater Charact, 2001; 46: 203
[16] Li Y, Wang F H, Liu G. J Chin Soc Corros Protect, 2001; 21: 215 (李瑛,王福会,刘刚.中国腐蚀与防护学报,2001;21: 215)
[17] Barbucci A, Farne G, Matteazzi P, Riccieri R, Cerisola G. Corros Sci, 1999; 41: 352
[18] Peyre P, Scherpereel X, Berthe L, Carboni C, Fabbro R, Beranger G, Lemaitre C. Mater Sci Eng, 2000; A280: 294g
[1] 余晨帆, 赵聪聪, 张哲峰, 刘伟. 选区激光熔化316L不锈钢的拉伸性能[J]. 金属学报, 2020, 56(5): 683-692.
[2] 李丹, 李杨, 陈荣生, 倪红卫. 不锈钢网上水热制备NiCo2O4/MoS2纳米复合结构及其在电解水制氢中的应用[J]. 金属学报, 2018, 54(8): 1179-1186.
[3] 刘廷光, 夏爽, 白琴, 周邦新. 316L不锈钢的三维晶粒与晶界形貌特征及尺寸分布[J]. 金属学报, 2018, 54(6): 868-876.
[4] 刘廷光, 夏爽, 白琴, 周邦新, 陆永浩. 孪晶界在316L不锈钢三维晶界网络中的分布特征[J]. 金属学报, 2018, 54(10): 1377-1386.
[5] 郭舒,韩恩厚,王海涛,张志明,王俭秋. 核电站316L不锈钢弯头应力腐蚀行为的寿命预测[J]. 金属学报, 2017, 53(4): 455-464.
[6] 刘刚, 李超, 马野, 张瑞君, 刘勇凯, 沙玉辉. 异步轧制硅钢表面纳米结构稳定性与渗硅行为*[J]. 金属学报, 2016, 52(3): 307-312.
[7] 马广璐, 崔新宇, 沈艳芳, NuriaCINCA, JosepM.GUILEMANY, 熊天英. 基体材料力学性能对316L不锈钢颗粒沉积行为的影响*[J]. 金属学报, 2016, 52(12): 1610-1618.
[8] 刘刚, 马野, 张瑞君, 王小兰, 沙玉辉, 左良. 异步轧制硅钢的表面纳米化及轧制参数的影响[J]. 金属学报, 2014, 50(9): 1071-1077.
[9] 陶乃镕, 卢柯. 纳米结构金属材料的塑性变形制备技术*[J]. 金属学报, 2014, 50(2): 141-147.
[10] 刘侠和, 吴欣强, 韩恩厚. 温度对国产核级316L不锈钢在加Zn水中电化学腐蚀性能的影响*[J]. 金属学报, 2014, 50(1): 64-70.
[11] 张利涛,王俭秋. 国产锻造态核级管材316L不锈钢在高温高压水中的应力腐蚀裂纹扩展行为[J]. 金属学报, 2013, 49(8): 911-916.
[12] 喇培清,孟倩,姚亮,周毛熊,魏玉鹏. Al元素对热轧316L不锈钢显微组织和力学性能的影响[J]. 金属学报, 2013, 49(6): 739-744.
[13] 刘刚,刘金阳,王小兰,王福会,赵骧,左良. 异步轧制纯Ti薄板表面纳米晶的形成[J]. 金属学报, 2013, 49(5): 599-604.
[14] 刘刚 严文聪 于福晓 赵刚 赵骧 左良. Al-12.7Si合金表面强烈塑性变形诱发的纳米化[J]. 金属学报, 2011, 47(6): 649-654.
[15] 刘光洲 王建明 张鉴清 曹楚南. 电解法处理压载水对316L不锈钢腐蚀行为的影响[J]. 金属学报, 2011, 47(12): 1600-1604.