|
|
超快激光诱导Cu薄膜熔化的神经网络分子动力学研究 |
高天雨1,2, 曾启昱1,2( ), 陈博1,2, 康冬冬1,2, 戴佳钰1,2( ) |
1 国防科技大学 理学院 长沙 410072 2 国防科技大学 湖南省极端条件物理及应用重点实验室 长沙 410072 |
|
Neural Network Molecular Dynamics Study of Ultrafast Laser-Induced Melting of Copper Nanofilms |
GAO Tianyu1,2, ZENG Qiyu1,2( ), CHEN Bo1,2, KANG Dongdong1,2, DAI Jiayu1,2( ) |
1 College of Science, National University of Defense Technology, Changsha 410072, China 2 Hunan Key Laboratory of Extreme Matter and Applications, National University of Defense Technology, Changsha 410072, China |
引用本文:
高天雨, 曾启昱, 陈博, 康冬冬, 戴佳钰. 超快激光诱导Cu薄膜熔化的神经网络分子动力学研究[J]. 金属学报, 2024, 60(10): 1439-1450.
Tianyu GAO,
Qiyu ZENG,
Bo CHEN,
Dongdong KANG,
Jiayu DAI.
Neural Network Molecular Dynamics Study of Ultrafast Laser-Induced Melting of Copper Nanofilms[J]. Acta Metall Sin, 2024, 60(10): 1439-1450.
1 |
Abu-Shawareb H, Acree R, Adams P, et al. Lawson criterion for ignition exceeded in an inertial fusion experiment [J]. Phys. Rev. Lett., 2022, 129: 075001
|
2 |
Shugaev M V, Wu C P, Armbruster O, et al. Fundamentals of ultrafast laser-material interaction [J]. MRS Bull., 2016, 41: 960
|
3 |
Roy N K, Dibua O G, Jou W, et al. A comprehensive study of the sintering of copper nanoparticles using femtosecond, nanosecond, and continuous wave lasers [J]. J. Micro Nano-Manuf., 2018, 6: 010903
|
4 |
Cheng C W, Chang C L, Chen J K, et al. Femtosecond laser melting of silver nanoparticles: Comparison of model simulations and experimental results [J]. Appl. Phys., 2018, 124A: 371
|
5 |
Zhang H, Li C, Bevillon E, et al. Ultrafast destructuring of laser-irradiated tungsten: Thermal or nonthermal process [J]. Phys. Rev., 2016, 94B: 224103
|
6 |
Chen Z, Mo M, Soulard L, et al. Interatomic potential in the nonequilibrium warm dense matter regime [J]. Phys. Rev. Lett., 2018, 121: 075002
|
7 |
Ernstorfer R, Harb M, Hebeisen C T, et al. The formation of warm dense matter: Experimental evidence for electronic bond hardening in gold [J]. Science, 2009, 323: 1033
doi: 10.1126/science.1162697
pmid: 19164708
|
8 |
Mo M Z, Chen Z, Li R K, et al. Heterogeneous to homogeneous melting transition visualized with ultrafast electron diffraction [J]. Science, 2018, 360: 1451
doi: 10.1126/science.aar2058
pmid: 29954977
|
9 |
Mo M Z, Murphy S, Chen Z J, et al. Visualization of ultrafast melting initiated from radiation-driven defects in solids [J]. Sci. Adv., 2019, 5: eaaw0392
|
10 |
Wu J, Tang M X, Zhao L R, et al. Ultrafast atomic view of laser-induced melting and breathing motion of metallic liquid clusters with MeV ultrafast electron diffraction [J]. Proc. Natl. Acad. Sci. USA, 2022, 119: e2111949119
|
11 |
Mahieu B, Jourdain N, Ta Phuoc K, et al. Probing warm dense matter using femtosecond X-ray absorption spectroscopy with a laser-produced betatron source [J]. Nat. Commun., 2018, 9: 3276
doi: 10.1038/s41467-018-05791-4
pmid: 30115918
|
12 |
Jourdain N, Lecherbourg L, Recoules V, et al. Ultrafast thermal melting in nonequilibrium warm dense copper [J]. Phys. Rev. Lett., 2021, 126: 065001
|
13 |
Chen Z, Curry C B, Zhang R, et al. Ultrafast multi-cycle terahertz measurements of the electrical conductivity in strongly excited solids [J]. Nat. Commun., 2021, 12: 1638
doi: 10.1038/s41467-021-21756-6
pmid: 33712576
|
14 |
Hohlfeld J, Wellershoff S S, Güdde J, et al. Electron and lattice dynamics following optical excitation of metals [J]. Chem. Phys., 2000, 251: 237
|
15 |
Lin Z B, Zhigilei L V. Thermal excitation of d band electrons in Au: Implications for laser-induced phase transformations [A]. Proceedings of SPIE 6261, High-Power Laser Ablation VI [C]. Taos: SPIE, 2006: 62610U
|
16 |
Lin Z B, Zhigilei L V, Celli V. Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium [J]. Phys. Rev., 2008, 77B: 075133
|
17 |
Lee J W, Kim M, Kang G, et al. Investigation of nonequilibrium electronic dynamics of warm dense copper with femtosecond X-ray absorption spectroscopy [J]. Phys. Rev. Lett., 2021, 127: 175003
|
18 |
Grolleau A, Dorchies F, Jourdain N, et al. Femtosecond resolution of the nonballistic electron energy transport in warm dense copper [J]. Phys. Rev. Lett., 2021, 127: 275901
|
19 |
Lin Z B, Zhigilei L V. Time-resolved diffraction profiles and atomic dynamics in short-pulse laser-induced structural transformations: Molecular dynamics study [J]. Phys. Rev., 2006, 73B: 184113
|
20 |
Molina J M, White T G. A molecular dynamics study of laser-excited gold [J]. Matter Radiat. Extremes, 2022, 7: 036901
|
21 |
Ivanov D S, Zhigilei L V. Effect of pressure relaxation on the mechanisms of short-pulse laser melting [J]. Phys. Rev. Lett., 2003, 91: 105701
|
22 |
Daraszewicz S L, Giret Y, Naruse N, et al. Structural dynamics of laser-irradiated gold nanofilms [J]. Phys. Rev., 2013, 88B: 184101
|
23 |
Murphy S T, Daraszewicz S L, Giret Y, et al. Dynamical simulations of an electronically induced solid-solid phase transformation in tungsten [J]. Phys. Rev., 2015, 92B: 134110
|
24 |
Murphy S T, Giret Y, Daraszewicz S L, et al. Contribution of electronic excitation to the structural evolution of ultrafast laser-irradiated tungsten nanofilms [J]. Phys. Rev., 2016, 93B: 104105
|
25 |
Arefev M I, Shugaev M V, Zhigilei L V. Kinetics of laser-induced melting of thin gold film: How slow can it get? [J]. Sci. Adv., 2022, 8: eabo2621
|
26 |
Behler J, Parrinello M. Generalized neural-network representation of high-dimensional potential-energy surfaces [J]. Phys. Rev. Lett., 2007, 98: 146401
|
27 |
Zhang L F, Han J Q, Wang H, et al. Deep potential molecular dynamics: A scalable model with the accuracy of quantum mechanics [J]. Phys. Rev. Lett., 2018, 120: 143001
|
28 |
Zeng Q Y, Chen B, Yu X X, et al. Towards large-scale and spatiotemporally resolved diagnosis of electronic density of states by deep learning [J]. Phys. Rev., 2022, 105B: 174109
|
29 |
Zeng Q Y, Yu X X, Yao Y P, et al. Ab initio validation on the connection between atomistic and hydrodynamic description to unravel the ion dynamics of warm dense matter [J]. Phys. Rev. Res., 2021, 3: 033116
|
30 |
Yang F H, Zeng Q Y, Chen B, et al. Lattice thermal conductivity of MgSiO3 perovskite and post-perovskite under lower mantle conditions calculated by deep potential molecular dynamics [J]. Chin. Phys. Lett., 2022, 39: 116301
|
31 |
Niu H Y, Bonati L, Piaggi P M, et al. Ab initio phase diagram and nucleation of gallium [J]. Nat. Commun., 2020, 11: 2654
doi: 10.1038/s41467-020-16372-9
pmid: 32461573
|
32 |
Santos-Florez P A, Yanxon H, Kang B, et al. Size-dependent nucleation in crystal phase transition from machine learning metadynamics [J]. Phys. Rev. Lett., 2022, 129: 185701
|
33 |
Chen B, Zeng Q Y, Yu X X, et al. Three-step formation of diamonds in shock-compressed hydrocarbons: Decomposition, species separation, and nucleation [J]. arXiv: 2208. 01830, 2022
|
34 |
Chen B, Zeng Q Y, Wang H, et al. Atomistic mechanism of phase transition in shock compressed gold revealed by deep potential [J]. arXiv: 2006. 13136, 2021
|
35 |
Qiu R, Zeng Q Y, Wang H, et al. Anomalous thermal transport across the superionic transition in ice [J]. Chin. Phys. Lett., 2023, 40: 116301
|
36 |
Zeng Q Y, Chen B, Zhang S, et al. Full-scale ab initio simulations of laser-driven atomistic dynamics [J]. npj Comput. Mater., 2023, 9: 213
|
37 |
Wang H, Zhang L F, Han J Q, et al. DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics [J]. Comput. Phys. Commun., 2018, 228: 178
|
38 |
Zhang L F, Lin D Y, Wang H, et al. Active learning of uniformly accurate interatomic potentials for materials simulation [J]. Phys. Rev. Mater., 2019, 3: 023804
|
39 |
Zhang Y Z, Gao C, Liu Q R, et al. Warm dense matter simulation via electron temperature dependent deep potential molecular dynamics [J]. Phys. Plasmas, 2020, 27: 122704
|
40 |
Zeng Q Y, Dai J Y. Structural transition dynamics of the formation of warm dense gold: From an atomic scale view [J]. Sci. China Phys. Mech. Astron., 2020, 63: 263011
|
41 |
Dai J Y, Hou Y, Yuan J M. Unified first principles description from warm dense matter to ideal ionized gas plasma: Electron-ion collisions induced friction [J]. Phys. Rev. Lett., 2010, 104: 245001
|
42 |
Dai J Y, Kang D D, Zhao Z X, et al. Dynamic ionic clusters with flowing electron bubbles from warm to hot dense iron along the hugoniot curve [J]. Phys. Rev. Lett., 2012, 109: 175701
|
43 |
Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Phys. Rev., 1996, 54B: 11169
|
44 |
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple [J]. Phys. Rev. Lett., 1996, 77: 3865
doi: 10.1103/PhysRevLett.77.3865
pmid: 10062328
|
45 |
Blöchl P E. Projector augmented-wave method [J]. Phys. Rev., 1994, 50B: 17953
|
46 |
Ivanov D S, Zhigilei L V. Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films [J]. Phys. Rev., 2003, 68B: 064114
|
47 |
Plimpton S. Fast parallel algorithms for short-range molecular dynamics [J]. J. Comput. Phys., 1995, 117: 1
|
48 |
Kittel C. Kittel's Introduction to Solid State Physic [M]. Beijing: Machine Press, 2020: 86
|
49 |
Tadano T, Gohda Y, Tsuneyuki S. Anharmonic force constants extracted from first-principles molecular dynamics: Applications to heat transfer simulations [J]. J. Phys.: Condens. Matter., 2014, 26: 225402
|
50 |
Nilsson G, Rolandson S. Lattice dynamics of copper at 80 K [J]. Phys. Rev., 1973, 7B: 2393
|
51 |
Japel S, Schwager B, Boehler R, et al. Melting of copper and nickel at high pressure: The role of d electrons [J]. Phys. Rev. Lett., 2005, 95: 167801
|
52 |
Simon F, Glatzel G. Bemerkungen zur schmelzdruckkurve [J]. Z. Anorg. Allg. Chem., 1929, 178: 309
|
53 |
Cagran C, Wilthan B, Pottlacher G. Enthalpy heat of fusion and specific electrical resistivity of pure silver, pure copper and the binary Ag-28Cu alloy [J]. Thermochim. Acta, 2006, 445: 104
|
54 |
Nizomov Z, Saidov R H, Gulov B N, et al. Temperature dependence of the heat capacity of aluminium, copper, silicon, magnesium, zinc and comparison with Debye theory [J]. Interconf, 2021, 55: 307
|
55 |
Smirnov N A. Copper, gold, and platinum under femtosecond irradiation: Results of first-principles calculations [J]. Phys. Rev., 2020, 101B: 094103
|
56 |
Cho B I, Ogitsu T, Engelhorn K, et al. Measurement of electron-ion relaxation in warm dense copper [J]. Sci. Rep., 2016, 6: 18843
doi: 10.1038/srep18843
pmid: 26733236
|
57 |
Hohlfeld J, Müller J G, Wellershoff S S, et al. Time-resolved thermoreflectivity of thin gold films and its dependence on film thickness [J]. Appl. Phys., 1997, 64B: 387
|
58 |
Zhang Y W, Chen J K. Ultrafast melting and resolidification of gold particle irradiated by pico- to femtosecond lasers [J]. J. Appl. Phys., 2008, 104: 054910
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|