Please wait a minute...
金属学报  2013, Vol. 49 Issue (1): 26-34    DOI: 10.3724/SP.J.1037.2012.00372
  论文 本期目录 | 过刊浏览 |
超快速冷却条件下亚共析钢中纳米级渗碳体析出的相变驱动力计算
王斌,刘振宇,周晓光,王国栋
东北大学轧制技术及连轧自动化国家重点实验室, 沈阳 110819
CALCULATION OF TRANSFORMATION DRIVING FORCE FOR THE PRECIPITATION OF NANO-SCALED CEMENTITES IN THE HYPOEUTECTOID STEELS THROUGH ULTRA FAST COOLING
WANG Bin, LIU Zhenyu, ZHOU Xiaoguang, WANG Guodong
State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819
引用本文:

王斌,刘振宇,周晓光,王国栋. 超快速冷却条件下亚共析钢中纳米级渗碳体析出的相变驱动力计算[J]. 金属学报, 2013, 49(1): 26-34.
WANG Bin, LIU Zhenyu, ZHOU Xiaoguang, WANG Guodong. CALCULATION OF TRANSFORMATION DRIVING FORCE FOR THE PRECIPITATION OF NANO-SCALED CEMENTITES IN THE HYPOEUTECTOID STEELS THROUGH ULTRA FAST COOLING[J]. Acta Metall Sin, 2013, 49(1): 26-34.

全文: PDF(962 KB)  
摘要: 

根据KRC和LFG模型提出的Fe-C合金的奥氏体相变机制, 系统地计算了过冷奥氏体的相变驱动力, 从热力学的角度分析了过冷奥氏体分解生成纳米级渗碳体颗粒的可能性, 并且在热轧后超快速冷却的条件下, 发现热轧亚共析钢的组织中存在大量纳米级渗碳体弥散分布的区域, 渗碳体的尺寸在十到几十纳米, 实现了在无微合金元素添加的条件下渗碳体的纳米级析出. 此外, 在过冷奥氏体组织中先共析铁素体附近存在大量的富C区, 根据平衡浓度计算, 局部C的摩尔分数可达到0.04-0.08, 这部分高浓度的奥氏体分解析出纳米级渗碳体的倾向性更大.

关键词 纳米级渗碳体超快速冷却过冷奥氏体热力学模型相变驱动力    
Abstract

In order to meet both the development requirements for reduction in cost and strengthening, recently,the research of precipitation of cementites, as the most economical and common precipitates in steels, has drawn wide attention in the field of precipitation strengthening again, because if cementites could be effectively refined to the scale of a few nanometers, it could also generate very strong precipitation strengthening effects to replace the strengthening role of the precipitates of micro-alloying elements. However, the cementites in hypoeutectoid steels usually form lamellar pearlite structure in near-equilibrium conditions, unable to form the precipitation of nanoscale particles, and they tend to be coarsened significantly at high temperatures after hot rolling. Therefore,the non-equilibrium precipitation of cementites only could be realized by increasing cooling rate after hot rolling, and the thermodynamic feasibility for the formation of nanoscale cementite precipitates during cooling has to be determined. In this work, according to the austenitic transformation mechanism of KRC and LFG models in Fe—C alloys, the transformation driving force of undercooled austenite was calculated systematically in a thermodynamic view, and the effect of ultra fast cooling (UFC) after hot rolling on the precipitation behavior ofnano-scale cementite particles was investigated. Based on the calculation results, the driving force of degenerated pearlitic transformation is the most negative in the three transformation mechanisms, at the same undercooled temperature, which theoretically indicates that the degenerated pearlitic transformation of undercooled austenite can easily occur to form cementite and ferrite with the equilibrium concentrations. In practical manufacturing, the diffusion of carbon atoms could be restrained by decreasing temperature in short time in the application of UFC, as a result that cementites would most likely dispersed in the form of nano-scaled particles directly, rather than being fully grown up into lamellar pealites. Due to the UFC, a large number of dispersed nano-scaled cementite areas were found in the microstructure of hot-rolled hypoeutectoid experiment steels, where the size of the cementites was within the range of ten to tens nanometers. The precipitation of nano-scaled cementites was realized without the micro-alloying elements. Moreover, there were a lot of carbon-rich areas in the microstructure of undercooled austenite, based on the equilibrium concentration calculation, in which the local mole fraction of carbon could be from 0.04 to 0.08, and this part of austenite with the high carbon concentration was apt to decompose and form likely the precipitation of nano-scaled cementites.

Key wordsnano-scaled cementite    ultra fast cooling (UFC)    undercooled austenite    thermodynamics model    transformation driving force
收稿日期: 2012-08-18     
基金资助:

国家自然科学基金项目51004037和中央高校基本科研业务费专项资金项目N100507002资助

作者简介: 斌, 男, 1984年生, 博士生

 


[1] Freeman S, Honeycombe R W K. Met Sci, 1977; 11: 59

[2] Ricks R, Howell P R. Acta Metall, 1983; 31: 853

[3] Kestenbach H. J Mater Sci Technol, 1997; 13: 731

[4] Charleux M, Poole W J, Militzer M, Deschamps A. Metall Mater Trans, 2001; 32A: 163

[5] Kagechika H. ISIJ Int, 2006; 46: 939

[6] Shin D H, Kim Y S, Lavernia E J. Acta Mater, 2001; 49: 2387

[7] Fu J, Li G Q, Mao X P, Fang K M. Metall Mater Trans, 2011; 42A: 3797

[8] Ivanisenko Y, Lojkowski W, Valiev R Z, Fecht H J. Acta Mater, 2003; 51: 5555

[9] Leeuwe Y V, Onink M, Sietsm J, Zwaag S. ISIJ Int, 2001; 41: 1037

[10] Funakawa Y, Shiozaki T, Tomita K, Yamamoto T, Maeda E. ISIJ Int, 2004; 44: 1945

[11] Yen H W, Huang C Y, Yang J R. Adv Mater Res, 2010; 89-91(suppl): 663

[12] Yong Q L. Secondary Phases in Steels. Beijing: Metallur

gical Industry Press, 2006: 159

(雍启龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 159)

[13] Yen H W, Huang C Y, Yang J R. Scr Mater, 2009; 61: 616

[14] Kaufman L, Radcliffe S V, Cohen M. Decomposition of Austenite by Diffusional Processe.New York: Interscience, 1962: 313

[15] Lacher J R. Proc Cambridge Phil Soc, 1937; 33: 518

[16] Fowler R H, Guggenheim E A. Statistical Thermodynamics. New York: Cambridge University Press, 1939: 442

[17] Wang G D. Shanghai Met, 2008; 30(2): 1

(王国栋. 上海金属, 2008; 30(2): 1)

[18] Lucas A, Simon P, Bourdon G, Herman J C, Riche P, Neutjens J, Harlet P. Steel Res Int, 2004; 75: 139

[19] Liu Z C, Yuan Z X, Liu Y C. Solid Phase Transformation. Beijing: China Machine Press, 2010: 73

(刘宗昌, 袁泽喜, 刘永长. 固态相变. 北京: 机械工业出版社, 2010: 73)

[20] Mou Y W, Hsu T Y. Acta Metall, 1984; 32: 1469

[21] Machlin E S. Trans TMS-AIME, 1968; 242: 1845

[22] Aaronson H I, Domain H A, Pound G M. Trans TMS-AIME, 1966; 236: 753

[23] Shiflet G J, Bradley J R, Aaronson H I. Metall Trans, 1978; 9A: 999

[24] Hsu T Y. Transformation Principle. Beijing: Science Press, 1988: 61

(徐祖耀. 相变原理. 北京: 科学出版社, 1988: 61)

[25] Kaufman L, Clougherty E V, Weiss R J. Acta Metall, 1963; 11: 323

[26] Mogutnov B M, Tomilin I A, Shartsman L A. Thermodynamics of Fe-C

Moscow: Metallurgy Press, 1972: 109

[27] Orr R L, Chipman J. Trans TMS-AIME, 1967; 239: 630

[28] Darken L S, Gurry R W. Physical Chemistry of Metals. New York: McGraw-Hill, 1953: 401
[1] 王寒玉, 李彩, 赵璨, 曾涛, 王祖敏, 黄远. 基于纳米活性结构的不互溶W-Cu体系直接合金化及其热力学机制[J]. 金属学报, 2023, 59(5): 679-692.
[2] 胡标, 张华清, 张金, 杨明军, 杜勇, 赵冬冬. 界面热力学与晶界相图的研究进展[J]. 金属学报, 2021, 57(9): 1199-1214.
[3] 胡宽辉, 毛新平, 周桂峰, 刘静, 王志奋. Si和Mn含量对超高强度热成形钢组织和性能的影响[J]. 金属学报, 2018, 54(8): 1105-1112.
[4] 王斌, 刘振宇, 冯洁, 周晓光, 王国栋. 超快速冷却条件下碳素钢中纳米渗碳体的析出行为和强化作用*[J]. 金属学报, 2014, 50(6): 652-658.
[5] 王斌,刘振宇,周晓光,王国栋. 轧后冷却路径对中碳钢扩孔性能的影响[J]. 金属学报, 2012, 48(4): 435-440.
[6] 尹云洋 杨王玥 李龙飞 孙祖庆 王西涛. 基于过冷奥氏体动态相变的热轧TRIP钢组织控制 II. 动态相变后冷却速率[J]. 金属学报, 2010, 46(2): 161-166.
[7] 尹云洋 杨王玥 李龙飞 孙祖庆 王西涛. 基于过冷奥氏体动态相变的热轧TRIP钢组织控制  I.原始奥氏体晶粒尺寸[J]. 金属学报, 2010, 46(2): 155-160.
[8] 陈伟; 李龙飞; 杨王玥; 孙祖庆 . Al对过共析钢缓冷相变和过冷奥氏体动态相变组织的影响[J]. 金属学报, 2008, 44(9): 1069-1075 .
[9] 尹云洋; 杨王王月; 李龙飞; 杨王玥; 孙祖庆; 王西涛 . 基于动态相变的热轧C-Mn-Al-Si系TRIP钢组织演变[J]. 金属学报, 2008, 44(6): 686-692 .
[10] 蒋光锐; 刘源; 李言祥 . 铝合金熔体中氢溶解度的计算模型[J]. 金属学报, 2008, 44(2): 129-133 .
[11] 尹云洋; 杨王玥; 李龙飞; 孙祖庆; 王西涛 . Al部分替代Si对基于动态相变热轧TRIP钢组织控制的影响[J]. 金属学报, 2008, 44(11): 1292-1298 .
[12] 尹云洋; 杨王玥; 李龙飞; 孙祖庆; 王西涛 . 基于动态相变的热轧TRIP 钢组织及性能研究[J]. 金属学报, 2008, 44(11): 1299-1304 .
[13] 黄青松; 李龙飞; 杨王玥; 孙祖庆 . 共析钢的过冷奥氏体动态相变和组织超细化[J]. 金属学报, 2007, 43(7): 724-730 .
[14] 盛广; 杨志刚 . 计算Fe--C--Xi合金系在正平衡和准平衡模式下相变驱动力的简便方法[J]. 金属学报, 2006, 42(1): 23-27 .
[15] 陈福义; 介万奇 . Al-Cu-Zn合金溶质分凝的热力学模型[J]. 金属学报, 2003, 39(6): 597-600 .