金属学报, 2024, 60(11): 1512-1530 DOI: 10.11900/0412.1961.2022.00382

研究论文

激光熔化沉积制备316L不锈钢的电化学腐蚀及空化腐蚀性能

蒋华臻1, 彭爽2, 胡琦芸1,3, 王光义2, 陈启生,1,3, 李正阳,1,3, 孙辉磊1,4, 房佳汇钰1,3

1 中国科学院力学研究所 宽域飞行工程科学与应用中心 北京 100190

2 南京航空航天大学 材料科学与技术学院 南京 210016

3 中国科学院大学 工程科学学院 北京 100049

4 河北科技大学 机械工程学院 石家庄 050018

Corrosion and Cavitation Erosion Resistance of 316L Stainless Steels Produced by Laser Metal Deposition

JIANG Huazhen1, PENG Shuang2, HU Qiyun1,3, WANG Guangyi2, CHEN Qisheng,1,3, LI Zhengyang,1,3, SUN Huilei1,4, FANG Jiahuiyu1,3

1 Wide Field Flight Engineering Science and Application Center, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China

2 Collage of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

3 School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China

4 School of Mechanical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China

通讯作者: 陈启生,qschen@imech.ac.cn,主要从事激光增材制造、计算传热学、晶体生长及过程模型化等研究;李正阳,zyli@imech.ac.cn,主要从事金属材料的润滑与摩擦、磨损与疲劳、激光增材制造等研究

责任编辑: 李海兰

收稿日期: 2022-08-15   修回日期: 2022-09-22  

基金资助: 国家自然科学基金项目(11772344)

Corresponding authors: CHEN Qisheng, professor, Tel:(010)82544092, E-mail:qschen@imech.ac.cn;LI Zhengyang, associate professor, Tel:(010)82544258, E-mail:zyli@imech.ac.cn

Received: 2022-08-15   Revised: 2022-09-22  

Fund supported: National Natural Science Foundation of China(11772344)

作者简介 About authors

蒋华臻,男,1992年生,博士

摘要

腐蚀和空化腐蚀性能是评估流体机械元件性能和可靠性的重要指标,而激光熔化沉积(LMD)作为材料表面改性和复杂构件制造的重要技术手段,是提升材料力学性能的有效途径。本工作利用激光熔化沉积制备了316L不锈钢样件,系统研究了激光功率、扫描策略、重熔及打印方向对成形件电化学腐蚀及空化腐蚀性能的影响,并与锻造316L不锈钢的腐蚀与空化腐蚀特性进行了比较。用开路电位测量法和动电位极化法测试了各沉积态试样在3.5%NaCl溶液中的耐腐蚀性能,并分析了不同工艺参数下LMD-316L不锈钢样品的空化腐蚀性能。与锻造316L不锈钢的均匀等轴晶显微结构相比,LMD-316L不锈钢具有与工艺参数相关的非平衡微观结构,即:大/小角度晶界、晶粒、胞/枝晶亚结构、与工艺相关的缺陷等,LMD-316L不锈钢的晶粒尺寸远大于锻造316L不锈钢,提高激光功率、打印方向从水平方向变为垂直打印时,材料的晶粒尺寸和枝晶臂间距均呈增大趋势,然而,表面重熔和90°旋转扫描策略处理后,材料的晶粒尺寸和枝晶臂间距变化趋势明显不同,显微硬度测试结果表明,相比晶粒尺寸,枝晶臂间距能够更好地解释显微硬度的变化规律。这种显著的微观结构差异也导致了LMD-316L不锈钢的电化学及空化腐蚀性能明显不同于锻造316L不锈钢。电化学腐蚀测试结果表明LMD-316L不锈钢的耐腐蚀性能远优于锻造316L不锈钢,不同工艺参数下LMD-316L不锈钢样件的极化电阻(Rp)相比锻造316L不锈钢提高了2~98倍,而腐蚀电流密度(icorr)降低了1~2个数量级;超声振动空化系统测试结果表明LMD-316L不锈钢的抗空蚀能力优于锻造316L不锈钢,但LMD-316L不锈钢内孔洞、晶界等作为应力集中源会优先发生空化损伤,并在随后的空化腐蚀进程中呈现“突出状”并逐渐消失形成大量韧窝。材料的抗空化腐蚀能力主要取决于其局部力学性能,LMD-316L不锈钢的硬度显著高于锻造316L不锈钢,因此其抗空蚀能力显著提高,然而由于LMD-316L不锈钢内部存在不均匀的微观组织和与工艺相关的孔洞缺陷,导致LMD-316L不锈钢的显微硬度云图呈现空间不均匀分布的特点,因而LMD-316L不锈钢空化后的表面形貌在某些局部区域存在较为严重的空化损伤。

关键词: 增材制造; 激光熔化沉积; 316L不锈钢; 腐蚀; 空化腐蚀; 显微硬度

Abstract

Corrosion and cavitation erosion are important indicators for evaluating the performance and reliability of hydraulic machinery. Laser metal deposition (LMD), as an important technique for both surface modification and complex component fabrication, is proven to be effective in enhancing the mechanical properties of materials. In this study, 316L stainless steel (316L SS) samples were fabricated using LMD and the effects of laser power, scanning strategy, surface remelting, and build direction on the electrochemical corrosion and cavitation erosion resistance of the LMD-produced samples were systematically studied. The obtained results were compared with those of a wrought counterpart. The corrosion resistance of the LMD-produced samples in a 3.5%NaCl solution was tested via open-circuit potential measurement and potentiodynamic polarization tests. Also, the cavitation erosion resistance of the LMD-produced samples was studied according to different process parameters. The microstructure of the forged 316L SS sample was characterized with uniformly distributed equiaxed grains, whereas the LMD-produced samples exhibited a process-dependent nonequilibrium microstructure consisting of high-/low-angle grain boundaries, tortuous grains, cellular/dendritic substructures, and processing-related defects. The grain size of the LMD-produced 316L SS sample was much larger than that of the forged 316L SS. By increasing the laser power or changing the sample from horizontally built to vertically built, both the grain size and dendritic arm spacing of the material tended to increase. However, when surface remelting and the 90°-rotation scanning strategy were adopted, the changes in the grain size and dendritic arm spacing of the material were obviously different. Results of a microhardness test showed that the dendritic arm spacing can better match the microhardness evolution than the grain size. This microstructural difference also led to a significantly different electrochemical corrosion and cavitation erosion performance from that of the forged 316L SS. Results of an electrochemical corrosion test showed that the corrosion resistance of the LMD-produced 316L SS sample was much better than that of the forged 316L SS, i.e., the polarization resistance (Rp) of the LMD-produced 316L SS sample under different processing increased by about 2-98 times, while the corrosion current density (icorr) decreased by one to two orders of magnitude. The test results of an ultrasonic vibration cavitation system showed that the cavitation erosion resistance of the LMD-produced 316L SS sample was better than that of the forged 316L SS. However, stress concentration may be induced in local areas such as pores and grain boundaries, which, in turn, facilitate preferentially cavitation damage in these areas. Also, protrusion topography appeared, and gradually disappeared to form a large number of dimples in the subsequent cavitation erosion process. The cavitation erosion resistance of the material mainly depended on its local mechanical properties. The microhardness test results showed that the hardness of the LMD-produced 316L SS sample was significantly higher than that of the forged sample, so its cavitation erosion resistance was significantly improved. However, because of the heterogeneous microstructure and process-related pore defects formed in the LMD-produced samples, the microhardness contour exhibited a spatially nonuniform distribution characteristic; hence, the surface morphology of the LMD-produced 316L SS sample was seriously eroded in some local areas after cavitation.

Keywords: additive manufacturing; laser metal deposition; 316L stainless steel; corrosion; cavitation erosion; microhardness

PDF (8169KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

蒋华臻, 彭爽, 胡琦芸, 王光义, 陈启生, 李正阳, 孙辉磊, 房佳汇钰. 激光熔化沉积制备316L不锈钢的电化学腐蚀及空化腐蚀性能[J]. 金属学报, 2024, 60(11): 1512-1530 DOI:10.11900/0412.1961.2022.00382

JIANG Huazhen, PENG Shuang, HU Qiyun, WANG Guangyi, CHEN Qisheng, LI Zhengyang, SUN Huilei, FANG Jiahuiyu. Corrosion and Cavitation Erosion Resistance of 316L Stainless Steels Produced by Laser Metal Deposition[J]. Acta Metallurgica Sinica, 2024, 60(11): 1512-1530 DOI:10.11900/0412.1961.2022.00382

空化是水环境中由局部压力波动引起的一种常见现象,它的特点是在非常小的区域内存在高压、高应变率的相互作用。空化腐蚀通常发生在高速流动的流体和局部压力突然变化的情况下,比如流体以相对较高的速率通过泵、阀等液压系统中的流体元件时,流体压力在机械元件的表面下降,如果局部压力低于饱和水汽压力就会产生空化泡。当这些气泡从低压部分运动到高压部分时,它们就会崩溃,气泡崩塌产生的激波和微射流则会对机械元件表面造成空化损伤[1~3]。在非腐蚀性的环境中,这种高速率的冲击本质上是一个机械过程,类似于冲击载荷或高振幅低周疲劳的作用[2],这种冲击作用会在材料表面引发局部塑性变形、脆性断裂并使材料发生质量损失,导致工程构件的使用寿命显著降低[2,3]。然而,在腐蚀性水溶液中(如海洋环境),这些构件会同时承受机械载荷和电化学腐蚀的作用,因此,对于在恶劣环境下使用的流体机械构件,必须同时考察其电化学和空化腐蚀性能。

316L作为一种低碳奥氏体不锈钢,是商业上少数可打印的钢铁材料之一,同时也是国际上热核实验反应堆中真空容器和制造液体火箭发动机喷油器的关键材料,在航空航天、生物医疗、核电工业等关键领域有广泛的应用[4~7]。增材制造(AM)作为一种变革性的制造技术,它最大的优势在于可以直接成形形状复杂的构件。由于高能密度热源熔化粉末形成的熔池内冷却速率可达105~107 K/s[5,8,9],材料的微观组织与传统制备方法得到的微观结构存在显著的差异[5,10]:选区激光熔化沉积成形316L (SLM-316L)不锈钢中形成了一种新的跨尺度结构,它由百微米尺度的熔池、几十微米到百微米的晶粒、亚微米尺度的胞结构、几十纳米的氧化物颗粒等构成。然而,SLM和激光熔化沉积(LMD)的冷却速率相差约3个数量级,所形成的跨尺度层级结构在具体每一个微观结构尺度上也存在数量级的差异,如激光熔化沉积成形316L (LMD-316L)不锈钢的熔池尺寸、晶粒长度和胞/枝晶结构尺寸分别为几毫米、500 μm~2.5 mm和2~20 μm,而相应SLM-316L不锈钢的特征尺寸分别为约100 μm、数百微米和小于1 μm[8~12]。这导致SLM与LMD制备的316L材料宏观力学性能也存在较大的区别:大量的文献[9,10,13~15]报道了通过调控工艺参数可以制备高强高韧的SLM-316L不锈钢,然而,除了少数文献[16,17]外,大多数文献的研究结果都表明LMD-316L不锈钢的力学性能通常表现为强度大幅提高,而延伸率明显降低[18~20]。因此,尽管SLM与LMD在技术原理上有诸多相似之处,其制备的材料微观结构差异也可能导致不同的力学性能响应。

由于316L不锈钢具有较高的应变硬化能力、良好的焊接性以及较强的耐腐蚀性能,因此其对空化腐蚀也具有较高的抵抗能力,可用于有空化泡存在的液体环境中[3]。近年来,增材制造316L (AM-316L)不锈钢被应用于生产重量轻、体积小的液压元件[21,22],部分流体机械元件在高旋转速率和具有腐蚀性的介质中工作,因此材料的电化学和空化腐蚀性能显得尤为重要。关于SLM-316L和LMD-316L不锈钢的电化学腐蚀性能已有较多报道[15,16,23~25]:一些研究工作[6,16]表明,由于AM-316L不锈钢不可避免地存在各种缺陷,导致其耐腐蚀性能弱于锻造316L不锈钢;而有些研究工作[24,25]却表明AM-316L不锈钢的特殊微结构使得其比锻造316L不锈钢具有更好的耐点蚀性能和更低的稳态点蚀速率。Ziętala等[16]的研究结果表明,LMD-316L不锈钢胞结构壁面上形成了δ铁素体相,这种相结构不会出现在传统冶金方法制造的316L不锈钢中,他们指出δ铁素体相的形成是打印态材料力学性能和耐腐蚀性能提高的主要原因;通过改变工艺参数调控材料内部的初始位错密度[23]或使用后处理手段改变打印态材料内部的非平衡微观结构(如亚晶、小角度晶界比例和缺陷尺寸),可以显著影响材料的钝化膜厚度和腐蚀电位[6,15]。这些研究结果充分表明,AM-316L不锈钢的耐腐蚀性能是与工艺参数高度相关的,可以通过与工艺相关的微观结构调控获得优于锻件的耐腐蚀性能。然而,现有的关于AM-316L不锈钢空化腐蚀性能的研究还较少,主要集中在SLM-316L不锈钢[3,21]:材料的空化损伤破坏主要有2个典型的过程,首先是材料表面逐渐积累塑性变形,此时不发生显著的质量损失,空化腐蚀处于孕育期阶段;其次是在空化泡的反复作用下,材料表面的应力集中区发生疲劳损伤和裂纹扩展,导致材料发生以疲劳为主的表面损伤,此时空化腐蚀处于侵蚀阶段。Hardes等[3]指出SLM-316L不锈钢的晶粒尺寸比相应铸件和热轧件更加细小且位错密度更高,因而材料的硬度和屈服强度提高,导致孕育期空化侵蚀阶段材料的表面完整性相对较好。然而SLM-316L不锈钢内部存在各种冶金缺陷,这些位置处会发生明显的空化质量损失。在空化侵蚀的进程中,材料表面沿着激光扫描轨迹的位置会优先形成凸起,它的存在增加了后续空化泡冲击材料表面的可能性,对材料的抗空化侵蚀性能不利。Ding等[21]的研究进一步指出孔洞缺陷的比例和晶粒的形貌(柱状晶和棋盘胞状晶粒结构)对SLM-316L不锈钢的空化侵蚀能力有较大影响,材料内部的缺陷比例越高,其抗空化腐蚀的能力越低;当微观结构以棋盘胞状晶为主时,材料的抗空化腐蚀能力较低。值得注意的是,韧性材料和脆性材料在孕育期和侵蚀期的变形行为是不同的[3]。鉴于LMD-316L不锈钢的延伸率通常比SLM-316L不锈钢的低[18~20],材料的空化腐蚀行为可能与SLM-316L不锈钢有所不同,但现有的AM-316L不锈钢研究主要集中在电化学腐蚀性能[15,16,23~25],且空化腐蚀性能的研究主要集中在韧性较好的SLM-316L不锈钢,系统研究工艺参数(如激光功率、扫描策略、打印方向、重熔处理等)相关的微观结构变化对LMD-316L不锈钢电化学腐蚀和空化腐蚀性能的影响则较为不足。

鉴于此,本工作利用LMD技术制备不同工艺参数下的316L不锈钢样件,分析激光功率、扫描策略、重熔及打印方向对成形件微观结构的影响,重点研究不同工艺参数下LMD-316L不锈钢的电化学和空化腐蚀性能的演化规律,并与锻造316L材料进行对比,旨在探索LMD-316L不锈钢电化学腐蚀的演变规律,确定有利于抗空化腐蚀的微观结构特征,为评估LMD-316L不锈钢的耐腐蚀性能和材料抗空化腐蚀的适用性提供参考。

1 实验方法

1.1 实验材料及成形工艺参数

LMD实验材料为利用气雾化方法生产的商用316L不锈钢粉末,粒径为50~150 μm (图1a),名义化学成分(质量分数,%)为:Cr 19.30 ± 0.5,Ni 11.15 ± 0.65,Mo 1.70 ± 0.2,Mn 0.6 ± 0.3,Si 1.4 ± 0.1,C ≤ 0.03,P ≤ 0.04,S ≤ 0.01,Fe余量。利用激光熔化沉积设备进行316L不锈钢试样的制备,相关设备的细节信息参见文献[26]。实验开始前,利用DZF-6020型真空干燥箱对实验所用粉末进行120℃、5 h的烘干处理,以保证粉末良好的流动性。沉积前利用200号砂纸对锻造316L基板(尺寸为150 mm × 150 mm × 15 mm)的上表面进行打磨,并用脱脂棉蘸取75% (体积分数)的酒精溶液进行表面清洗,烘干后备用。

图1

图1   实验细节信息

Fig.1   Experimental details in the study

(a) image showing the as-used 316L powder

(b) scanning strategy used in the study

(c) sketch of build orientation and test surface for laser metal deposition (LMD)-produced samples


为了研究不同工艺参数下成形件的电化学腐蚀及空化腐蚀性能,设计了不同的工艺参数组合,见表1。其中,实验编号No.1~No.3考察激光功率的影响,编号No.1和No.4考察表面重熔的影响,编号No.1和No.5考察扫描策略的影响,而编号No.1和No.6考察打印方向的影响。其他重要工艺参数如光斑尺寸、送粉速率、搭接率分别固定为2.0 mm、12.9 g/min和50%。每种工艺打印5个尺寸为10 mm × 10 mm × 5 mm的实验块,采用蛇形往复扫描策略(图1b),起始角度为与x方向平行,相邻层间的激光扫描方向相对旋转角度见表1图1c为成形件的不同打印方向和被测试试样表面的示意图,除编号No.6的试样测试面为平行于打印方向的侧表面外,其余试样的测试面均为垂直于打印方向的上表面。

表1   实验所用的工艺参数及其对应的样品编号

Table 1  Sample notations according to different process parameters

Sample No.Laser power / WScanning speed mm·s-1Scanning strategyBuild orientation (z axis) / mm
112006.0105° rotation5
214006.0105° rotation5
316006.0105° rotation5
412006.0Surface remelting for every two layers5
512006.090° rotation5
612006.0105° rotation10

新窗口打开| 下载CSV


1.2 电化学腐蚀及空化腐蚀测试

在进行电化学及空化腐蚀实验之前,对所有试样的待测面依次用耐水砂纸进行打磨至3000号,最后用1.5 μm的金刚石悬浮液抛光至镜面[9,27],然后放置在75%酒精溶液中超声清洗并烘干后备用。采用CHI660E电化学工作站在室温下对不同成形工艺下的试样进行耐腐蚀性能测试,用硅橡胶密封被测试试样,电化学测试溶液为3.5%NaCl (质量分数)溶液,阳极为被测试试样,阴极为Pt电极,参比电极为饱和甘汞电极。开路电位(OCP)测试时间为3600 s,当开路电位稳定后进行动电位极化测试,阴极初始电位比被测试样对应的腐蚀电位低0.6~0.7 V,扫描速率为0.001 V/s。采用超声振动系统对各工艺下制备的LMD-316L不锈钢试样进行空化腐蚀实验,设备工作原理如图2所示,采用的超声振动频率和振幅分别为20 kHz和6 μm,输出功率为500 W。超声波探头顶端与被测试样相对的材料为不锈钢,按照文献[3,21]推荐的值将试样与探头顶端之间的距离调整为0.5 mm。空化腐蚀实验在3.5%NaCl水溶液中进行,温度保持为25℃,每30 min更换一次NaCl水溶液。每个样品在空化实验结束后,利用75%酒精溶液进行超声清洗,烘干后储存。

图2

图2   超声空化腐蚀设备原理图

Fig.2   Schematic of the ultrasonic cavitation erosion equipment


1.3 微观结构表征及显微硬度测试

对于LMD-316L不锈钢,将抛光至镜面的试样放置在VHX-5000光学显微镜(OM)下进行观察,根据拍摄的抛光截面信息,利用金相法测量成形件的致密度,该方法根据灰度的不同来区分缺陷,利用金相处理软件Image-Pro Plus 6.0统计缺陷面积分数,致密度的具体计算过程参见文献[9]。随后,用自制的酸性水溶液(2%HF + 8%HNO3 + 90%H2O,体积分数)在室温下对试样腐蚀约30 min,利用Ultra 55扫描电子显微镜(SEM)观察打印态材料的微观组织,为量化不同工艺参数下LMD-316L不锈钢微观结构尺寸,针对每个试样使用Image-Pro Plus 6.0软件测量至少20个位置的二次枝晶臂间距,取平均值作为该工艺的测量值。利用线切割对购置的商业锻造316L基板进行切割(切割块体尺寸为:10 mm × 10 mm × 5 mm),块体试样用于微观结构表征和腐蚀实验。块体锻造316L经过标准的研磨、抛光流程后,同样用自制的酸性水溶液腐蚀,先利用OM观察样品的腐蚀情况,无明显划痕且可观察到晶界后再利用SEM进行观察。用JSM-7900F SEM的电子背散射衍射(EBSD)系统对不同工艺参数下LMD-316L和锻造316L不锈钢的晶粒形貌和尺寸进行观察与统计,测试时所有被观察的样品均倾斜70°,加速电压为20 kV,扫描步长为2 μm。使用TSL-OIM分析软件处理EBSD数据,其中晶粒取向差介于2°~10°之间的晶界为小角度晶界(low angle grain boundaries,LAGBs),大于10°的晶界为大角度晶界(high angle grain boundaries,HAGBs)[10,28]。对于空化腐蚀后的试样,首先利用SU8100场发射SEM对试样的空化损伤情况进行观察,然后利用ZYGO NexView三维白光干涉表面形貌仪对空化腐蚀后的表面粗糙度进行量化,该设备的垂直分辨率为0.1 nm。最后,为了阐明不同工艺参数下试样的空化腐蚀性能差异,利用Everone MH-6显微硬度计在打印态试样的中部位置按照125 μm的间距分别沿着xy方向等间距地进行测量,其中x方向40个测试点,y方向5个测试点,载荷9.8 N,加载时间15 s,每个试样的硬度云图由200个硬度数据组成。

2 实验结果与讨论

为了更好地了解LMD-316L不锈钢耐腐蚀性能及空化腐蚀性能随工艺参数的变化,对锻造316L不锈钢的微观结构、耐腐蚀性能及空化腐蚀性进行了表征与测试,并将其结果与打印态LMD-316L不锈钢进行对比。图3为锻造316L不锈钢的微观组织特征。可以看出,其晶粒为典型的等轴晶结构(图3ab),平均晶粒尺寸为(19.26 ± 8.76) μm (图3c),大角度晶界的比例为97.3%,其中约有40%的晶界取向差在58.2°~61.3°之间。研究[14]表明,对于低层错能的316L不锈钢,60°的取向差界面是Σ3孪晶界,位错与这些连贯的孪晶界面相互作用,在提高材料强度的同时还可以保持较好的韧性,这是因为这些连续的孪晶界不仅可以作为位错的源/汇,还可以阻止位错从孪晶的一侧运动到另一侧,此外,它可以作为滑移面,在滑移面上可发生位错的滑移和堆积。因此,沿着孪晶界面的位错滑移可以有效地释放位错与孪晶交互产生的应力集中[29]图3e为锻造316L不锈钢的显微硬度测试结果。可以看出,整个测试区域的显微硬度分布较为均匀,为179.6~217.3 HV1,平均显微硬度为(196.4 ± 5.7) HV1,略低于文献[30]中报道的商业锻造316L硬度(214.8 ± 10.2) HV。

图3

图3   锻造316L不锈钢的微观组织特征

Fig.3   Microstructure characteristics of wrought 316L stainless steel (SS)

(a) SEM image (b) EBSD inverse pole figure (IPF) image (c) grain size distribution

(d) misorientation angle distribution (e) microhardness contour


2.1 孔隙及致密度

图4为不同工艺参数下LMD-316L不锈钢的致密度测量结果和相应的代表性缺陷OM像。可以看出,所有工艺制备的316L材料致密度均值都超过了99.9%,这与使用SLM方法制备的316L材料致密度相当,一般认为成形件致密度达到99%为高致密度零件[9,10,31]。可以看出:① 提高激光功率,致密度有增加的趋势(图4,No.1、No.2、No.3),这是因为激光功率的大小直接决定熔池的峰值温度,激光功率越大,熔池内的峰值温度越高[32],因而粉末会熔化得更加充分,材料更加致密,这在SLM-316L不锈钢随激光功率变化的研究[9,33]中也得到了类似的规律;② 重熔可以使得LMD-316L不锈钢的致密度提高(图4,No.1和No.4),这是因为重熔可以有效地使孔洞缺陷有更多的几率从熔池中逃逸出来,而且重熔可以降低成形件表面粗糙度进而使粉末熔化得更加充分,促使缺陷含量降低[34,35];③ 相比105°旋转扫描策略,采用90°旋转扫描策略有助于提高成形件的致密度(图4,No.1和No.5)。Saboori等[36]研究指出,通过调控相邻两层之间的旋转角度可以显著改变熔池内的冷却速率,使得最终材料的微观结构及力学性能有较大的差异。因此,可以推断通过调控相邻层之间的旋转角度可以改变成形件的热积累程度,进而影响最终材料的致密度、微观结构和力学性能;④ 垂直打印的样品致密度略高于水平打印的试样(图4,No.1和No.6),这与Ronneberg等[37] SLM-316L的研究结果一致,而Ding等[21]的研究结果却表明孔隙率在水平和垂直打印的SLM-316L不锈钢试样中基本无差别。缺陷作为应力集中源是材料发生过早断裂失效的重要原因,然而,文献中报道的关于打印方向对成形件延伸率影响的结果似乎是矛盾的:有研究[38]认为沿水平方向打印的316L材料延伸率高于相应沿着垂直方向打印的材料,而一些研究[16,39~41]则认为沿着垂直方向打印的试样延伸率更高。进一步分析可以发现这些研究工作中所用的实验设备、制备的试样尺寸和打印参数是不同的,这些因素均会导致成形件的致密度发生变化,下面将通过显微组织观察的手段分析不同工艺参数下材料的微观结构变化规律。

图4

图4   不同工艺参数下的激光熔化沉积316L (LMD-316L)不锈钢成形件致密度及相应的典型缺陷形貌图

Fig.4   Relative densities of LMD-produced 316L (LMD-316L) SS fabricated by different process parameters and the representative defects images


2.2 显微组织及硬度

图5为不同工艺参数下制备的LMD-316L不锈钢显微组织的SEM像。可以看出,不同工艺参数下LMD-316L不锈钢的显微组织是柱状树枝晶和胞晶的混合组织,其中树枝晶占据主要比例,这与文献[42]中报道的结果是一致的。从图中还可看出,随着功率的增加(图5a~c,No.1~No.3),材料的二次枝晶臂间距呈增加的趋势,平均尺寸分别为(2.57 ± 0.43)、(3.38 ± 0.83)和(3.77 ± 0.71) μm;每2层重熔一次打印时,材料的二次枝晶臂间距变大,为(3.84 ± 0.74) μm (图5ad);相比105°旋转扫描,90°旋转扫描打印所得材料的二次枝晶臂间距更加粗大,为(4.29 ± 0.56) μm (图5ae);垂直打印的试样二次枝晶臂间距为(5.13 ± 0.79) μm,高于水平打印的试样(图5af)。众所周知,冷却速率决定了材料最终微观结构尺寸,冷却速率越大,材料的二次枝晶臂间距越小[8,9],根据二次枝晶臂间距与冷却速率的关系[43],估算了样品No.1~No.6的冷却速率,分别为:8.99 × 103、2.98 × 103、1.93 × 103、1.79 × 103、1.15 × 103和5.64 × 102 K/s。因此,通过调控工艺参数或扫描策略控制熔池内的冷却速率,进而控制二次枝晶臂间距是可行的。图6为不同工艺参数下LMD-316L不锈钢的EBSD像,相应的晶粒尺寸分布及晶粒取向差分布分别见图78。可以看出,晶粒尺寸随着工艺参数的变化更加复杂,不同工艺参数下的材料均由曲折晶界组成的长条状晶粒和细小的晶粒组成,这是增材制造材料区别于传统方法制造材料所独有的特征[44,45]。虽然1400 W下的平均晶粒尺寸相比1200 W的略小,但考虑到测量误差和晶粒尺寸分布,整体上看,晶粒仍然表现出粗化的趋势,随着功率从1200 W提高到1600 W,LMD-316L不锈钢的平均晶粒尺寸增大了2倍(图67a~c),以往的研究[8,46]也表明晶粒尺寸随着激光功率的增加而增大;重熔后表层材料经历了短时熔化再结晶,可观察到大量的细小晶粒(图6d),这可能是因为这些细小的形核晶粒没有足够的保温时间导致的[28];相邻层旋转角度从105°调整到90°后,平均晶粒尺寸从91.84 μm降至68.23 μm,Saboori等[36]研究也表明通过调整相邻层的旋转角度会改变LMD-316L不锈钢的微观结构尺寸,因此可以推断,本工作中相邻层间采用2种扫描角度时,熔道在后续的成形过程中热积累会有显著差别,进而影响最终凝固后材料的晶粒尺寸;垂直打印的试样表现出典型的外延生长晶粒结构特征[28,31],并随相邻层间扫描角度的变化而有一定角度的偏转,这主要是由晶粒的择优取向导致的,晶粒一般总是沿着最大温度梯度的方向生长[47]。就晶粒尺寸分布、晶粒取向差分布和平均晶粒尺寸而言,水平和垂直打印的试样没有太大区别(图6a~8a图6f~8f)。与锻造316L不锈钢晶粒取向差分布以大量Σ3孪晶界为主不同,各工艺下的LMD-316L不锈钢晶粒取向差分布呈现正态分布的特征,且小角度晶界的比例显著高于锻造316L不锈钢(图3d8)。

图5

图5   不同工艺参数下LMD-316L不锈钢显微组织的SEM像

Fig.5   SEM images of LMD-316L SS fabricated by different process parameters

(a) No.1 (b) No.2 (c) No.3 (d) No.4 (e) No.5 (f) No.6


图6

图6   不同工艺参数下LMD-316L不锈钢的EBSD像

Fig.6   EBSD images of LMD-316L SS fabricated by different process parameters (TD—transverse direction, BD—building direction, LD—longitudinal direction)

(a) No.1 (b) No.2 (c) No.3 (d) No.4 (e) No.5 (f) No.6


图7

图7   不同工艺参数下LMD-316L不锈钢的晶粒尺寸分布图

Fig.7   Grain size distributions of LMD-316L SS fabricated by different process parameters

(a) No.1 (b) No.2 (c) No.3 (d) No.4 (e) No.5 (f) No.6


图8

图8   不同工艺参数下LMD-316L不锈钢的晶粒取向差分布

Fig.8   Misorientation angle distributions of LMD-316L SS fabricated by different process parameters

(a) No.1 (b) No.2 (c) No.3 (d) No.4 (e) No.5 (f) No.6


微观结构的变化会导致材料力学性能的变化。图9为各工艺下的硬度分布云图,相应的硬度数据列于表2。随着激光功率的增加,LMD-316L不锈钢的平均显微硬度从355.4 HV1降低到325.5 HV1 (图9a~c表2),相比No.1试样,重熔和90°旋转扫描均会降低试样的显微硬度(图9ade表2);相比水平打印的试样,垂直打印试样的显微硬度显著降低(图9af表2),降幅约12.8%,这与文献[40]中报道的结果较为一致,即:沿水平方向打印的试样比沿垂直方向打印的试样强度高约10%。值得注意的是,虽然不同工艺参数下LMD-316L不锈钢的晶粒尺寸显著大于锻造316L不锈钢,但是其显微硬度明显高于锻造316L不锈钢(图3e图9表2)。进一步分析发现:LMD-316L不锈钢硬度的变化与二次枝晶臂间距的变化具有明显的关联,即:枝晶臂间距增大会导致显微硬度的下降,然而显微硬度与晶粒尺寸的变化没有明显关系(图569),这预示着使用二次枝晶臂间距可能会更好地预测LMD-316L不锈钢的力学性能。虽然关于AM-316L材料屈服强度的预测目前还存在争议[7],但是现有研究[10,28,48]表明,使用晶粒内部的胞结构/二次枝晶臂间距能更好地预测AM-316L不锈钢力学性能的变化。

图9

图9   不同工艺参数下LMD-316L不锈钢的显微硬度分布云图

Fig.9   Microhardness contours for LMD-316L SS fabricated by different process parameters

(a) No.1 (b) No.2 (c) No.3 (d) No.4 (e) No.5 (f) No.6


表2   不同工艺参数下LMD-316L不锈钢试样的显微硬度 (HV1)

Table 2  Microhardnesses of LMD-316L SS samples fabricated by different process parameters

Sample No.Minimum hardnessMaximum hardnessAverage hardness
1313.1390.2355.4 ± 15.7
2305.6372.4335.1 ± 13.2
3298.7354.8325.5 ± 10.5
4308.7373.2340.1 ± 13.6
5304.3368.7340.4 ± 11.9
6279.9333.6309.9 ± 10.7

新窗口打开| 下载CSV


2.3 电化学腐蚀行为

图10为不同工艺参数制备的LMD-316L和锻造316L不锈钢在NaCl溶液中的开路电位(EOCP)随时间的变化规律。可以看出,所有被测试样的开路电位均随着时间的推移而呈现先增加(由负值向正值变化)后逐渐稳定的趋势,这表明试样在NaCl溶液中自主形成了钝化膜[44],钝化膜的形成起到了进一步阻抗腐蚀的作用。与锻造316L不锈钢相比,LMD-316L不锈钢在开路电位曲线中显现出多个小的尖峰,个别试样出现了明显的峰谷,这表明LMD-316L不锈钢在EOCP达到稳定前存在击穿和再钝化的过程[44]。观察3600 s对应的开路电位,可以发现No.1~No.4的EOCP明显高于锻造316L不锈钢,90°旋转扫描打印(No.5)的试样与锻造316L不锈钢的EOCP非常接近,而垂直打印的试样(No.6)的EOCP低于锻造316L不锈钢。图11为各工艺下的LMD-316L不锈钢动电位极化曲线测试结果,腐蚀电位(Ecorr)和点蚀电位(Epit)在图中也进行了标注,相应的电化学参数列于表3。可以看出:LMD-316L不锈钢的极化电阻(Rp)相比锻造316L不锈钢提高了2~98倍,而腐蚀电流密度(icorr)下降了至少1个数量级。就Ecorr而言,No.1~No.3均明显高于锻造316L,而No.4~No.6的Ecorr与锻造316L不锈钢相差不大。除了No.6外,材料的EOCP变化规律与Ecorr一致,No.6的EOCPEcorr变化规律不一致可能是开路电位在测试时间内不稳定造成的。进一步比较各工艺下材料的Epit,可以发现No.1和No.3没有发生明显的点蚀,No.2和No.4的Epit明显高于锻造316L不锈钢,但No.5和No.6的Epit明显低于锻造316L不锈钢,这表明LMD-316L不锈钢在某些工艺下易发生点蚀。Kazemipour等[24]的研究指出SLM-316L不锈钢具有比锻造316L不锈钢更强的耐点蚀性能且其亚稳态点蚀速率也更低,材料内部的工艺缺陷在早期并不影响合金的点蚀电位,本工作No.1~No.4的测试结果与Kazemipour等[24]的研究规律一致。然而,由于材料微观结构的显著变化(图56),No.5和No.6在保持较小的腐蚀速率下点蚀电位相比锻造316L不锈钢明显降低。总体来讲,在考虑材料的Ecorricorr条件下,LMD-316L不锈钢相比锻造316L不锈钢的腐蚀电位更高而腐蚀速率更小,其耐腐蚀性能大幅提高。最近有研究[16,23]表明AM-316L不锈钢的耐腐蚀性能与其材料的微观结构变化密切相关,其中具有高位错密度的亚稳态胞/枝晶结构对AM-316L不锈钢的耐腐蚀性能具有显著影响,研究[10,15]已表明打印态的316L不锈钢处于高应力状态,亚稳态的胞结构/枝晶壁面上存在大量的位错网络结构[13,23],提高扫描速率亦即降低输入到熔池内的能量密度可使材料的一次/二次枝晶臂间距减小[8,9,13,42],进而提高壁面上的位错密度[23,49]。Nie等[25]指出LMD-316L不锈钢内大量的小角度晶界和较高的位错密度促使材料表面形成更致密且更厚的钝化膜,从而能够获得比锻造316L不锈钢更好的耐腐蚀性能。本工作的微观结构表征已证实提高激光功率、重熔处理、90°旋转扫描打印和垂直方向打印均会导致LMD-316L不锈钢的二次枝晶臂间距变大(图5),并进一步导致材料内部初始位错密度的降低[23,49],因而材料的极化电阻降低而腐蚀电流密度提高(图11表3)。这表明打印态LMD-316L不锈钢的耐腐蚀性能与其内部的亚结构尺寸(二次枝晶臂间距)可能直接相关,二次枝晶臂间距的增大会导致耐腐蚀性能的降低。然而,与锻造316L不锈钢相比,所有工艺下的LMD-316L不锈钢小角度晶界比例均高于锻造316L不锈钢(图3d图8),且LMD-316L不锈钢的初始位错密度高于锻造316L不锈钢[25],这可能是本工作LMD-316L不锈钢耐腐蚀性能相比锻造316L不锈钢大幅提高的原因。

图10

图10   不同工艺参数制备的LMD-316L和锻造316L不锈钢在3.5%NaCl溶液中的开路电位随时间的变化规律

Fig.10   Open-circuit potentials (EOCP) of LMD-316L SS and wrought 316L SS measured in 3.5%NaCl solution for samples produced by different processing parameters

(a) effect of laser power (b) effect of surface remelting (c) effect of scanning strategy (d) effect of printing direction


图11

图11   扫描速率为0.001 V/s时不同工艺参数制备的LMD-316L和锻造316L不锈钢的动电位极化曲线

Fig.11   Potentiodynamic polarization curves of LMD-316L SS and wrought 316L SS produced by different processing parameters measured at a scan rate of 0.001 V/s (Note that the abscissa is shown in logarithm. Ecorr—corrosion potential, Epit—pitting potential)

(a) effect of laser power (b) effect of surface remelting (c) effect of scanning strategy (d) effect of printing direction


表3   LMD-316L和锻造316L不锈钢在3.5%NaCl溶液中的电化学参数

Table 3  Electrochemical parameters of LMD-316L SS and wrought 316L SS in 3.5%NaCl solution (These parameters are obtained from its corresponding potentiodynamic polarization curves)

Sample No.Rp / (Ω·cm-2)babcicorr / (A·cm-2)
13100745.5334.56153.521.475 × 10-8
287315.41335.11126.575.757 × 10-7
3119891.4415.8181.554.583 × 10-7
475209.72475.24134.937.398 × 10-7
562532.5593.4790.935.483 × 10-7
666780.6976.56135.337.739 × 10-7
Wrought 316L31502.423809.52167.422.294 × 10-6

Note:Rp—polarization resistance; ba, bc—anodic and cathodic Tafel slopes, respectively; icorr—corrosion current density

新窗口打开| 下载CSV


2.4 空化腐蚀行为

对不同工艺参数下LMD-316L及锻造316L不锈钢在超声振动系统中进行4 h的空化腐蚀实验,图12a~18a图12c~18c分别为锻造316L不锈钢和No.1~No.6试样在暴露0.5和4 h空化实验后表面的SEM像。可以看出,所有试样的表面在经过空化腐蚀后均变得更加粗糙,在空化实验的早期,所有试样表面均形成了条带状凸起(图12a~18a),随着空化实验时间的延长,各试样表面粗糙度进一步增加,表面形貌出现了大量的韧窝(图12c~18c),这种韧窝形貌与文献[16,18]报道的拉伸断口中出现的韧窝非常相似,这表明所有被空化腐蚀的试样在空化泡的作用下发生了严重的材料损伤和塑性变形。观察试样表面还可以看出:试样表面的凸起优先发生在晶界和未熔缺陷位置,这是因为在塑性变形过程中位错倾向于沿着晶界堆积以抵抗塑性变形[29],在晶界处更容易发生空化损伤,这与空化腐蚀作用下的疲劳过程有关[21];而缺陷(如未熔缺陷或气孔缺陷等)的边缘在空化泡的作用下易引起应力集中,是产生裂纹继而发生裂纹扩展的高发区[50],对增材制造零件的力学性能是不利的[9,28,47,50],会导致材料在空化泡的冲击作用下发生撕裂而造成质量损失[3,21]。Ding等[21]研究表明,SLM-316L不锈钢在空化腐蚀过程中材料的晶界会优先发生塑性变形,并认为沿晶界发生空化损伤的区域不仅会造成应力集中,还会导致空化泡在晶界附近溃灭,促使在晶界附近形成沟壑/凸起,这与本工作图12a~18a图12c~18c观察到的结果是一致的。图12b~18b图12d~18d分别为使用三维白光干涉表面形貌仪测量锻造316L不锈钢和No.1~No.6试样在暴露0.5和4 h的典型表面形貌,图中基本未变形的部分用绿色表示,而凹陷的区域和凸起的区域分别用蓝色和红色表示。可以看出,锻造316L不锈钢的变形较为均匀(图12b),经过4 h的空化腐蚀后试样表面出现了大量的凹坑和凸起(图12d),这是典型的侵蚀空化损伤,这与LMD-316L不锈钢的空化行为有显著区别(图13b~18b图13d~18d):LMD-316L不锈钢的表面形貌非常不均匀,有的区域出现了密集的凸起,而有的区域出现了明显的凹陷,且这2种形貌分布较为分散(图13b~18b),经过4 h的空化腐蚀后,LMD-316L不锈钢并不像锻造316L不锈钢形成大量明显的凸起,其表面形貌分布特征与0.5 h的形貌类似(图13d~18d)。

图12

图12   经0.5和4 h空化腐蚀测试后锻造316L不锈钢的表面形貌

Fig.12   Topographies of wrought 316L SS after 0.5 h (a, b) and 4 h (c, d) of the cavitation test (a, c) SEM images (Inset in Fig.12c is the local magnified image) (b, d) images obtained by 3D white light interferometric surface topography (The color bar shows the height of the surface, the same below)


图13

图13   经0.5和4 h空化腐蚀测试后No.1试样的表面形貌

Fig.13   Topographies of sample No.1 after 0.5 h (a, b) and 4 h (c, d) of the cavitation test (a, c) SEM images (Inset in Fig.13c is the local magnified image) (b, d) images obtained by 3D white light interferometric surface topography


图14

图14   经0.5和4 h空化腐蚀测试后No.2试样的表面形貌

Fig.14   Topographies of sample No.2 after 0.5 h (a, b) and 4 h (c, d) of the cavitation test (a, c) SEM images (Inset in Fig.14c is the local magnified image) (b, d) images obtained by 3D white light interferometric surface topography


图15

图15   经0.5和4 h空化腐蚀测试后No.3试样的表面形貌

Fig.15   Topographies of sample No.3 after 0.5 h (a, b) and 4 h (c, d) of the cavitation test (a, c) SEM images (Inset in Fig.15c is the local magnified image) (b, d) images obtained by 3D white light interferometric surface topography


图16

图16   经0.5和4 h空化腐蚀测试后No.4试样的表面形貌

Fig.16   Topographies of sample No.4 after 0.5 h (a, b) and 4 h (c, d) of the cavitation test (a, c) SEM images (Insets in Figs.16a and c are the local magnified images) (b, d) images obtained by 3D white light interferometric surface topography


图17

图17   经0.5和4 h空化腐蚀测试后No.5试样的表面形貌

Fig.17   Topographies of sample No.5 after 0.5 h (a, b) and 4 h (c, d) of the cavitation test (a, c) SEM images (Insets in Figs.17a and c are the local magnified images) (b, d) images obtained by 3D white light interferometric surface topography


图18

图18   经0.5和4 h空化腐蚀测试后No.6试样的表面形貌

Fig.18   Topographies of sample No.6 after 0.5 h (a, b) and 4 h (c, d) of the cavitation test (a, c) SEM images (b, d) images obtained by 3D white light interferometric surface topography


从空化腐蚀的机理方面来讲,超声振动在液体介质中形成的空化泡会产生反复的冲击波和微射流,这种具有高能量状态的冲击波/微射流作用到试样表面后会在材料的薄弱区域优先发生空化损伤,一些较轻微的冲击会在工艺诱导的缺陷和晶界位置处出现局部应力集中,导致位错沿晶界移动,随着空化实验时间的延长,会逐渐塑性变形并形成凹坑,而一些高能量的强烈冲击波则会导致材料的质量损失[3,21]。材料在3.5%NaCl溶液中的空化腐蚀可以看成机械损伤、腐蚀损伤及机械腐蚀协同作用损伤3部分[51],即:T = E + C + S,其中,T为总质量损失率;E为纯空化腐蚀导致的质量损失率;C为纯腐蚀而导致的质量损失率,C = K · icorr· EWK取8.954 × 10-3EW为当量重量(其值为物质的摩尔质量除以它接受或失去电子的数目),对于不锈钢EW取25.12[51]S为2者的协同效应导致的质量损失率。Zheng等[51]的研究结果表明,当空化腐蚀时间不大于2 h时,纯腐蚀的作用可以忽略,而当空化腐蚀时间超过8 h时,材料会经受腐蚀和空化腐蚀的共同作用。鉴于本工作空化腐蚀总时长较短(4 h),因此,可以用材料的抗机械损伤作为评价LMD-316L不锈钢在3.5%NaCl溶液中的空化腐蚀演变规律。不同工艺参数下的纯机械损伤可以用显微硬度衡量,上述研究结果已表明LMD-316L不锈钢的耐腐蚀性能与其内部的二次枝晶臂间距直接相关(纯腐蚀损伤度量指标),而二次枝晶臂间距又直接影响材料的显微硬度(机械损伤度量指标)。图3e图9分别为锻造316L不锈钢和LMD-316L不锈钢No.1~No.6的硬度云图。可见,锻造316L不锈钢的硬度分布较为均匀,而且其显微硬度明显低于LMD-316L不锈钢;此外,相比锻造316L不锈钢,LMD-316L不锈钢的硬度分布更加不均匀,这主要是由增材制造材料的不均匀跨尺度微观组织和局部工艺缺陷导致的[27,52]。LMD-316L不锈钢硬度不均匀分布的特点也导致其在空化腐蚀的进程中出现局部破坏严重,而有些区域只是轻微变形。然而,由于LMD-316L不锈钢的平均硬度显著高于锻造316L不锈钢,因此前者的抗空化腐蚀能力显著高于后者。为了更好地评价不同工艺制备的材料表面粗糙度随空化腐蚀时间的变化,利用表面形貌参数对表面粗糙度进行了量化,分别为:表面粗糙度(Sa)、表面均方根粗糙度(Sq)和表面微观不平度十点高度(Sz),这些参数的具体定义和计算方法参见文献[53]。图19为利用这3个表面形貌参数表征被测试样形貌的结果(所有数据均为2次测量的平均值)。可以看出,SaSq的变化与材料硬度的变化具有一定的关联,即:随着激光功率的增加,材料的平均硬度降低,SaSq有增加的趋势(图19ab,No.1~3);重熔处理(No.4)、90°旋转扫描打印(No.5)和垂直方向打印(No.6)与No.1试样相比均会导致LMD-316L不锈钢的硬度降低(图9),因而SaSq值略高于No.1 (图19ab),产生这一结果的根本原因是材料的二次枝晶臂间距增大,材料的腐蚀电流密度增大,显微硬度降低,因而材料的纯腐蚀损伤和机械损伤均会增大,导致材料的机械损伤和腐蚀损伤加重。此外,4 h后材料表面的SaSq均高于对应0.5 h的测量值。然而,不同工艺参数下的Sz没有明显的变化规律,这是因为Sz是一个极端参数,它定义为采样区内5个最高峰的绝对高度和5个最深凹坑/峰谷深度的平均值[53],其值取决于表面高度峰值和峰谷,而在空化腐蚀的进程中材料表面在空化泡的冲击作用下会发生质量损失[3,21,51],因而表面Sz存在较大的不确定性,总体看LMD-316L不锈钢的Sz小于相应空化时间下锻造316L不锈钢的Sz (图19c)。

图19

图19   利用3个典型表面形貌参数表征不同工艺参数下LMD-316L和锻造316L不锈钢的形貌特征

Fig.19   Three parameters which characterize the topographic features of LMD-316L SS and wrought 316L SS samples after 0.5 and 4 h of the cavitation tests

(a) surface roughness (Sa)

(b) root mean square deviation of a surface (Sq)

(c) ten-point height of a surface (Sz)


3 结论

(1) 不同于锻造316L不锈钢的等轴晶微结构,LMD-316L不锈钢由曲折晶界组成的长条状晶粒和细小的晶粒组成,晶粒内部存在胞/枝晶微观结构。调整工艺参数能够显著改变LMD-316L不锈钢熔池内的冷却速率(估算值介于5.64 × 102~8.99 × 103 K/s),进而影响胞/枝晶臂间距。虽然LMD-316L不锈钢的晶粒尺寸远大于锻造316L不锈钢,但是前者的显微硬度(309.9~355.4 HV1)显著高于后者(196.4 HV1),相比晶粒尺寸,胞/枝晶臂间距的变化能够更好地解释显微硬度的变化趋势。

(2) 激光熔化沉积制备的高致密度316L不锈钢,其电化学腐蚀能力相比锻造316L不锈钢大幅提高,其中LMD-316L不锈钢的Rp介于62532.5~3100745.5 Ω/cm2icorr介于7.739 × 10-7~1.475 × 10-8 A/cm2;锻造316L不锈钢的Rpicorr分别为31502.4 Ω/cm2和2.294 × 10-6 A/cm2。较高的小角度晶界比例和较高的位错密度可能是LMD-316L不锈钢耐腐蚀性能大幅提高的原因。

(3) 长时间的空化腐蚀后所有材料表面均形成了大量的韧窝,LMD-316L不锈钢的抗空蚀能力优于锻造316L不锈钢,这主要是因为LMD-316L不锈钢的显微硬度远大于锻造316L不锈钢,在空化泡冲击作用下能够有效地抵抗塑性变形。空化腐蚀优先发生在位错堆积(如晶界)或应力集中的位置(如孔洞缺陷),而由于LMD-316L不锈钢不均匀跨尺度微观组织和局部工艺缺陷,材料的显微硬度云图在空间上呈现不均匀分布的特点,导致空化腐蚀后材料的表面粗糙度分布不均匀。

参考文献

Park I C,Kim S J.

Cavitation erosion behavior in seawater of electroless Ni-P coating and process optimization using Taguchi method

[J]. Appl. Surf. Sci., 2019, 477: 37

[本文引用: 1]

Xu J, Peng S, Li Z Y, et al.

The influence of semiconducting properties of passive films on the cavitation erosion resistance of a NbN nanoceramic coating

[J]. Ultrason. Sonochem., 2021, 71: 105406

[本文引用: 2]

Hardes C, Pöhl F, Röttger A, et al.

Cavitation erosion resistance of 316L austenitic steel processed by selective laser melting (SLM)

[J]. Addit. Manuf., 2019, 29: 100786

[本文引用: 10]

Li Z, Voisin T, McKeown J T, et al.

Tensile properties, strain rate sensitivity, and activation volume of additively manufactured 316L stainless steels

[J]. Int. J. Plast., 2019, 120: 395

[本文引用: 1]

Zhong Y, Liu L F, Wikman S, et al.

Intragranular cellular segregation network structure strengthening 316L stainless steel prepared by selective laser melting

[J]. J. Nucl. Mater., 2016, 470: 170

[本文引用: 2]

Kong D C, Ni X Q, Dong C F, et al.

Heat treatment effect on the microstructure and corrosion behavior of 316L stainless steel fabricated by selective laser melting for proton exchange membrane fuel cells

[J]. Electrochim. Acta, 2018, 276: 293

[本文引用: 2]

Jiang H Z, Fang J H Y, Chen Q S, et al.

State of the art of selective laser melted 316L stainless steel: Process, microstructure, and mechanical properties

[J]. Chin. J. Lasers, 2022, 49: 1402804

[本文引用: 2]

蒋华臻, 房佳汇钰, 陈启生 .

激光选区熔化成形316L不锈钢工艺、微观组织、力学性能的研究现状

[J]. 中国激光, 2022, 49: 1402804

[本文引用: 2]

Ma M M, Wang Z M, Zeng X Y.

A comparison on metallurgical behaviors of 316L stainless steel by selective laser melting and laser cladding deposition

[J]. Mater. Sci. Eng., 2017, A685: 265

[本文引用: 5]

Jiang H Z, Li Z Y, Feng T, et al.

Effect of process parameters on defects, melt pool shape, microstructure, and tensile behavior of 316L stainless steel produced by selective laser melting

[J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34:495

[本文引用: 9]

Wang Y M, Voisin T, McKeown J T, et al.

Additively manufactured hierarchical stainless steels with high strength and ductility

[J]. Nat. Mater., 2018, 17: 63

DOI      PMID      [本文引用: 6]

Many traditional approaches for strengthening steels typically come at the expense of useful ductility, a dilemma known as strength-ductility trade-off. New metallurgical processing might offer the possibility of overcoming this. Here we report that austenitic 316L stainless steels additively manufactured via a laser powder-bed-fusion technique exhibit a combination of yield strength and tensile ductility that surpasses that of conventional 316L steels. High strength is attributed to solidification-enabled cellular structures, low-angle grain boundaries, and dislocations formed during manufacturing, while high uniform elongation correlates to a steady and progressive work-hardening mechanism regulated by a hierarchically heterogeneous microstructure, with length scales spanning nearly six orders of magnitude. In addition, solute segregation along cellular walls and low-angle grain boundaries can enhance dislocation pinning and promote twinning. This work demonstrates the potential of additive manufacturing to create alloys with unique microstructures and high performance for structural applications.

Saboori A, Aversa A, Marchese G, et al.

Microstructure and mechanical properties of AISI 316L produced by directed energy deposition-based additive manufacturing: A review

[J]. Appl. Sci., 2020, 10: 3310

Herzog D, Seyda V, Wycisk E, et al.

Additive manufacturing of metals

[J]. Acta Mater., 2016, 117: 371

[本文引用: 1]

Liu L F, Ding Q Q, Zhong Y, et al.

Dislocation network in additive manufactured steel breaks strength-ductility trade-off

[J]. Mater. Today, 2018, 21: 354

[本文引用: 3]

Shamsujjoha M, Agnew S R, Fitz-Gerald J M, et al.

High strength and ductility of additively manufactured 316L stainless steel explained

[J]. Metall. Mater. Trans., 2018, 49A: 3011

[本文引用: 1]

Kong D C, Dong C F, Ni X Q, et al.

Mechanical properties and corrosion behavior of selective laser melted 316L stainless steel after different heat treatment processes

[J]. J. Mater. Sci. Technol., 2019, 35: 1499

DOI      [本文引用: 5]

Irregular grains, high interfacial stresses and anisotropic properties widely exist in 3D-printed metallic materials, and this paper investigated the effects of heat treatment on the microstructural, mechanical and corrosion properties of 316 L stainless steel fabricated by selective laser melting. Sub-grains and low-angle boundaries exist in the as-received selective laser melted (SLMed) 316 L stainless steel. After heat treatment at 1050 °C, the sub-grains and low-angle boundaries changed slightly, and the stress state and strength decreased to some extent due to the decrease of dislocation density. After heat treatment at 1200 °C, the grains became uniform, and the dislocation cells vanished, which led to a sharp decline in the hardness and strength. However, the ductility was improved after recrystallization heat treatment. The passive film thickness and corrosion potential of the SLMed 316 L stainless steel decreased after heat treatment, and the pitting potential also decreased due to the accelerated transition from metastable to steady-state pitting; this accelerated transition was caused by the presence of weak passive films at the enlarged pores after heat treatment, especially for an adequate solid solution treatment.

Ziętala M, Durejko T, Polański M, et al.

The microstructure, mechanical properties and corrosion resistance of 316L stainless steel fabricated using laser engineered net shaping

[J]. Mater. Sci. Eng., 2016, A677: 1

[本文引用: 8]

Yan Z, Zou K, Cheng M P, et al.

Revealing relationships between heterogeneous microstructure and strengthening mechanism of austenitic stainless steels fabricated by directed energy deposition (DED)

[J]. J. Mater. Res. Technol., 2021, 15: 582

[本文引用: 1]

Guo P, Zou B, Huang C Z, et al.

Study on microstructure, mechanical properties and machinability of efficiently additive manufactured AISI 316L stainless steel by high-power direct laser deposition

[J]. J. Mater. Sci. Technol., 2017, 240: 12

[本文引用: 3]

Yang N, Yee J, Zheng B, et al.

Process-structure-property relationships for 316L stainless steel fabricated by additive manufacturing and its implication for component engineering

[J]. J. Therm. Spray Technol., 2017, 26: 610

Aversa A, Marchese G, Bassini E.

Directed energy deposition of AISI 316L stainless steel powder: Effect of process parameters

[J]. Metals, 2021, 11: 932

[本文引用: 2]

Ding H Q, Tang Q, Zhu Y, et al.

Cavitation erosion resistance of 316L stainless steel fabricated using selective laser melting

[J]. Friction, 2021, 9: 1580

[本文引用: 10]

Zhu Y, Yang Y, Lu P, et al.

Influence of surface pores on selective laser melted parts under lubricated contacts: A case study of a hydraulic spool valve

[J]. Virtual Phys. Prototy., 2019, 14: 395

DOI      [本文引用: 1]

Hydraulic valve spools can be produced with hollow structures using SLM to increase dynamic response. The contact between the valve spool and body is crucial and relates to the performance of a hydraulic valve, which has not been studied. This paper investigates the reciprocating contact of an SLM-fabricated spool valve from a tribological aspect. By varying the process parameters, porous and standard spool samples (18Ni-300 steel) were produced using SLM. The lubricating behaviours of 18Ni-300 samples under various contact pressures and reciprocating frequencies were investigated in comparison to a real spool sample (hardened 38CrMoAI steel) using conventional manufacturing. The results indicate that the standard SLM 18Ni-300 spool sample has comparable tribological performance compared to the conventional manufactured 38CrMoAI sample. The SLM fabricated sample, with a number of large pores, has the highest friction coefficient under a wide range of contact conditions due to rough surfaces and cracks. Compared to the standard sample, the presence of a few small pores positively affects lubrication by providing local extra lubrication and serving as debris containers. Such an effect becomes very notable under low pressure, reducing the friction coefficients by half.

Sprouster D J, Cunningham W S, Halada G P, et al.

Dislocation microstructure and its influence on corrosion behavior in laser additively manufactured 316L stainless steel

[J]. Addit. Manuf., 2021, 47: 102263

[本文引用: 7]

Kazemipour M, Mohammadi M, Mfoumou E, et al.

Microstructure and corrosion characteristics of selective laser-melted 316L stainless steel: The impact of process-induced porosities

[J]. JOM, 2019, 71: 3230

DOI      [本文引用: 3]

The microstructure and corrosion susceptibility of selective laser-melted (SLM) 316L stainless steel on planes aligned and perpendicular to the building direction in aqueous 3.5 wt.% NaCl solution were investigated and compared with their conventionally wrought counterpart. Cyclic potentiodynamic polarization results confirmed a superior pitting resistance and a reduced rate of metastable pitting for the SLM-fabricated samples regardless of the sample's orientation compared to the wrought alloy. Although the process-induced porosities in the SLM samples did not affect the corrosion and pitting potentials of the alloy at the initial immersion time, they likely contributed to the reduced re-passivation potential of the surface. Furthermore, at longer immersion times, the electrochemical impedance spectroscopy and immersion testing results confirmed a more detrimental impact of the process-induced porosities on lowering the electrochemical stability of the SLM-316L surface perpendicular to the building direction, where larger size and higher density of crevice-like porosities were detected.

Nie J J, Wei L, Jiang Y, et al.

Corrosion mechanism of additively manufactured 316 L stainless steel in 3.5 wt.% NaCl solution

[J]. Mater. Today Commun., 2021, 26: 101648

[本文引用: 5]

Hou J Y, Li Z Y, Jiang H Z, et al.

Process and properties of Ti6Al4V manufactured using laser melting deposition with dimensionless processing diagram

[J]. Chin. J. Lasers, 2022, 49: 0202013

[本文引用: 1]

候静宇, 李正阳, 蒋华臻 .

基于无量纲工艺图的激光熔化沉积制备Ti6Al4V工艺与性能研究

[J]. 中国激光, 2022, 49: 0202013

[本文引用: 1]

Jiang H Z, Li Z Y, Feng T, et al.

Factor analysis of selective laser melting process parameters with normalised quantities and Taguchi method

[J]. Opt. Laser Technol., 2019, 119: 105592

[本文引用: 2]

Jiang H Z, Li Z Y, Feng T, et al.

Effect of annealing temperature and strain rate on mechanical property of a selective laser melted 316L stainless steel

[J]. Acta Metall. Sin. (Engl. Lett.), 2022, 35: 773

[本文引用: 5]

Lu K, Lu L, Suresh S.

Strengthening materials by engineering coherent internal boundaries at the nanoscale

[J]. Science, 2009, 324: 349

DOI      PMID      [本文引用: 2]

Strengthening materials traditionally involves the controlled creation of internal defects and boundaries so as to obstruct dislocation motion. Such strategies invariably compromise ductility, the ability of the material to deform, stretch, or change shape permanently without breaking. Here, we outline an approach to optimize strength and ductility by identifying three essential structural characteristics for boundaries: coherency with surrounding matrix, thermal and mechanical stability, and smallest feature size finer than 100 nanometers. We assess current understanding of strengthening and propose a methodology for engineering coherent, nanoscale internal boundaries, specifically those involving nanoscale twin boundaries. Additionally, we discuss perspectives on strengthening and preserving ductility, along with potential applications for improving failure tolerance, electrical conductivity, and resistance to electromigration.

Khodabakhshi F, Farshidianfar M H, Gerlich A P, et al.

Microstructure, strain-rate sensitivity, work hardening, and fracture behavior of laser additive manufactured austenitic and martensitic stainless steel structures

[J]. Mater. Sci. Eng., 2019, A756: 545

[本文引用: 1]

Sun Z J, Tan X P, Tor S B, et al.

Simultaneously enhanced strength and ductility for 3D-printed stainless steel 316L by selective laser melting

[J]. NPG Asia Mater., 2018, 10: 127

[本文引用: 2]

Ion J C, Shercliff H R, Ashby M F.

Diagrams for laser materials processing

[J]. Acta Metall. Mater., 1992, 40: 1539

[本文引用: 1]

Kamath C, El-dasher B, Gallegos G F, et al.

Density of additively-manufactured, 316L SS parts using laser powder-bed fusion at powers up to 400 W

[J]. Int. J. Adv. Manuf. Technol., 2014, 74: 65

[本文引用: 1]

Yu W H, Sing S L, Chua C K, et al.

Influence of re-melting on surface roughness and porosity of AlSi10Mg parts fabricated by selective laser melting

[J]. J. Alloys Compd., 2019, 792: 574

[本文引用: 1]

Kim T H, Baek G Y, Jeon J B, et al.

Effect of laser rescanning on microstructure and mechanical properties of direct energy deposited AISI 316L stainless steel

[J]. Surf. Coat. Technol., 2021, 405: 126540

[本文引用: 1]

Saboori A, Piscopo G, Lai M, et al.

An investigation on the effect of deposition pattern on the microstructure, mechanical properties and residual stress of 316L produced by directed energy deposition

[J]. Mater. Sci. Eng., 2020, A780: 139179

[本文引用: 2]

Ronneberg T, Davies C M, Hooper P A.

Revealing relationships between porosity, microstructure and mechanical properties of laser powder bed fusion 316L stainless steel through heat treatment

[J]. Mater. Des., 2020, 189: 108481

[本文引用: 1]

Casati R, Lemke J, Vedani M.

Microstructure and fracture behavior of 316L austenitic stainless steel produced by selective laser melting

[J]. J. Mater. Sci. Technol., 2016, 32: 738

[本文引用: 1]

Yu C F, Zhong Y, Zhang P, et al.

Effect of build direction on fatigue performance of L-PBF 316L stainless steel

[J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 539

[本文引用: 1]

Güden M, Yavaş H, Tanrıkulu A A, et al.

Orientation dependent tensile properties of a selective-laser-melt 316L stainless steel

[J]. Mater. Sci. Eng., 2021, A824: 141808

[本文引用: 1]

Shiau C H, McMurtrey M D, O'Brien R C, et al.

Deformation behavior and irradiation tolerance of 316 L stainless steel fabricated by direct energy deposition

[J]. Mater. Des., 2021, 204: 109644

[本文引用: 1]

Zhang K, Wang S J, Liu W J, et al.

Characterization of stainless steel parts by laser metal deposition shaping

[J]. Mater. Des., 2014, 55: 104

[本文引用: 2]

Katayama S, Matsunawa A.

Solidification microstructure of laser welded stainless steels

[J]. ICALEO, 1984, 1984: 60

[本文引用: 1]

Ren J, Mahajan C, Liu L, et al.

Corrosion behavior of selectively laser melted CoCrFeMnNi high entropy alloy

[J]. Metals, 2019, 9: 1029

[本文引用: 3]

Salman O O, Gammer C, Chaubey A K, et al.

Effect of heat treatment on microstructure and mechanical properties of 316L steel synthesized by selective laser melting

[J]. Mater. Sci. Eng., 2019, A748: 205

[本文引用: 1]

Montero-Sistiaga M L, Godino-Martinez M, Boschmans K, et al.

Microstructure evolution of 316L produced by HP-SLM (high power selective laser melting)

[J]. Addit. Manuf., 2018, 23: 402

[本文引用: 1]

Wang D, Song C H, Yang Y Q, et al.

Investigation of crystal growth mechanism during selective laser melting and mechanical property characterization of 316L stainless steel parts

[J]. Mater. Des., 2016, 100: 291

[本文引用: 2]

Krakhmalev P, Fredriksson G, Svensson K, et al.

Microstructure, solidification texture, and thermal stability of 316 L stainless steel manufactured by laser powder bed fusion

[J]. Metals, 2018, 8: 643

[本文引用: 1]

Li Z, He B, Guo Q.

Strengthening and hardening mechanisms of additively manufactured stainless steels: The role of cell sizes

[J]. Scr. Mater., 2020, 177: 17

[本文引用: 2]

Wang P, Goh M H, Li Q, et al.

Effect of defects and specimen size with rectangular cross-section on the tensile properties of additively manufactured components

[J]. Virtual Phys. Prototy., 2020, 15: 251

DOI      [本文引用: 2]

To evaluate specimen size dependence on the tensile properties of additively manufactured (AM) components, various rectangular specimens, ranging from miniaturised to ASTM standard specimens, are machined from electron beam melted Ti-6Al-4V and used for the tensile testing. It is found that the elongation is strongly related to the sample size while the yield and ultimate tensile strengths exhibit an independent feature. Three major aspects, (i) presented location of lack of fusion, (ii) size and segregation of pores, and (iii) slimness ratio, have a synergic influence on the elongation of different specimen sizes with various cross-section area. Our findings suggest that microscale tests arise uncertainties in measurement, which must be considered in order to provide quantifiable levels of confidence when applying such tests to discriminate a material's behaviour. The experimental results and analyses provide a guideline for the design and testing of non-standard specimens for AM components.

Zheng Z B, Long J, Wang S, et al.

Cavitation erosion-corrosion behaviour of Fe-10Cr martensitic steel microalloyed with Zr in 3.5% NaCl solution

[J]. Corros. Sci., 2021, 184: 109382

[本文引用: 4]

Cherry J A, Davies H M, Mehmood S, et al.

Investigation into the effect of process parameters on microstructural and physical properties of 316L stainless steel parts by selective laser melting

[J]. Int. J. Adv. Manuf. Technol., 2015, 76: 869

[本文引用: 1]

Stout K J, Blunt L. Three Dimensional Surface Topography [M]. 2nd Ed., London: Kogan Page Ltd., 2000: 157

[本文引用: 2]

/