The coprecipitation of carbides and copper (Cu) particles is an effective technique for strengthening microalloyed steel. In this study, OM and TEM techniques were used to investigate the coprecipitation behavior of carbides and ε-Cu in Ti-Mo-Cu microalloyed steel at different isothermal temperatures. A solid solution precipitation model and the classical nucleation theory of precipitates were used to calculate the precipitation kinetics in the Ti-Mo-Cu microalloyed steel. The results show that (Ti, Mo)C and ε-Cu precipitated independently, and they showed the N-W and K-S orientations with the ferrite matrix, respectively. The dominant precipitates at 600oC are ε-Cu. (Ti, Mo)C and ε-Cu were coprecipitated at 620oC. At 640-660oC, (Ti, Mo)C was mainly precipitated in the form of interphase precipitation. Thermodynamic calculations showed that in the range of 600-660oC with an increase in temperature, the Ti/Mo atomic ratio in (Ti, Mo)C increases from 2.5 to 4.5, and the carbide changes from Ti0.71Mo0.29C to Ti0.79Mo0.21C. The precipitation-temperature-time (PTT) curves of (Ti, Mo)C and ε-Cu intersect at 616oC, indicating simultaneous precipitation of (Ti, Mo)C and ε-Cu. (Ti, Mo)C and ε-Cu preferentially precipitate below and above 616oC, respectively. The calculation and experimental results are consistent.
TANG Shuai, LAN Huifang, DUAN Lei, JIN Jianfeng, LI Jianping, LIU Zhenyu, WANG Guodong. Co-Precipitation Behavior in Ferrite Region During Isothermal Process in Ti-Mo-Cu Microalloyed Steel. Acta Metallurgica Sinica[J], 2022, 58(3): 355-364 DOI:10.11900/0412.1961.2020.00521
Fig.3
TEM bright field images of the interphase precipitate in speciments isothermally treated at 620oC (a), 640oC (b), and 660oC (c), and dark filed image at 660oC and corresponding SAED pattern (inset) (d)
(a) Ti/Mo atomic ratio and x (b) driving force (c) PTT curves (d) solid solution content
Fig.4
Thermodynamics/kinetics calculation results of precipitation of (Ti, Mo)C and ε-Cu in ferrite at different temper-atures (PPT—precipitation-temperature-time, t0—the precipitation start time, t0.05—the time of pricipitates fraction of 5%)
First-principles calculations of hydrostatic pressure effects on the structural, elastic and thermodynamic properties of cubic monocarbides XC (X = Ti, V, Cr, Nb, Mo, Hf)
... Parameters used in calculations[29,30,35-41] ...
... [29]aMoCLattice constant of MoC at room temperature0.428nm[35]aCuLattice constant of ε-Cu at room temperature0.362nm[36]aFeLattice constant of α-Fe at room temperature0.287nmαTiCLinear expansion coefficient of TiC7.86 × 10-6K-1[37]αMoCLinear expansion coefficient of MoC6.88 × 10-6K-1[38]αCuLinear expansion coefficient of Cu16.5 × 10-6K-1[39]QTiActivation energy of Ti in α-Fe248kJ·mol-1[40]QMoActivation energy of Mo in α-Fe229kJ·mol-1[41]QCuActivation energy of Cu in α-Fe284kJ·mol-1[41]vFePoisson ratio of Fe0.291[41]vCuPoisson ratio of Cu0.345[41]GFeShear modulus of Fe89334 - 29.688TGPa[30]GCuShear modulus of Cu44689 - 15.936TGPa[30]kBoltzmann constant1.38 × 10-23J·K-1不同温度下(Ti, Mo)C与<i>ε</i>-Cu在铁素体中析出热/动力学的计算结果
(a) Ti/Mo atomic ratio and x (b) driving force (c) PTT curves (d) solid solution content ...
... Parameters used in calculations[29,30,35-41] ...
... [35]aCuLattice constant of ε-Cu at room temperature0.362nm[36]aFeLattice constant of α-Fe at room temperature0.287nmαTiCLinear expansion coefficient of TiC7.86 × 10-6K-1[37]αMoCLinear expansion coefficient of MoC6.88 × 10-6K-1[38]αCuLinear expansion coefficient of Cu16.5 × 10-6K-1[39]QTiActivation energy of Ti in α-Fe248kJ·mol-1[40]QMoActivation energy of Mo in α-Fe229kJ·mol-1[41]QCuActivation energy of Cu in α-Fe284kJ·mol-1[41]vFePoisson ratio of Fe0.291[41]vCuPoisson ratio of Cu0.345[41]GFeShear modulus of Fe89334 - 29.688TGPa[30]GCuShear modulus of Cu44689 - 15.936TGPa[30]kBoltzmann constant1.38 × 10-23J·K-1不同温度下(Ti, Mo)C与<i>ε</i>-Cu在铁素体中析出热/动力学的计算结果
(a) Ti/Mo atomic ratio and x (b) driving force (c) PTT curves (d) solid solution content ...
Lattice parameters, densities, expansion coefficients and perfection of structure of Cu and of Cu-In α phase
1
1969
... Parameters used in calculations[29,30,35-41]Table 1
Symbol
Description
Magnitude
Unit
Ref.
aTiC
Lattice constant of TiC at room temperature
0.433
nm
[29]
aMoC
Lattice constant of MoC at room temperature
0.428
nm
[35]
aCu
Lattice constant of ε-Cu at room temperature
0.362
nm
[36]
aFe
Lattice constant of α-Fe at room temperature
0.287
nm
αTiC
Linear expansion coefficient of TiC
7.86 × 10-6
K-1
[37]
αMoC
Linear expansion coefficient of MoC
6.88 × 10-6
K-1
[38]
αCu
Linear expansion coefficient of Cu
16.5 × 10-6
K-1
[39]
QTi
Activation energy of Ti in α-Fe
248
kJ·mol-1
[40]
QMo
Activation energy of Mo in α-Fe
229
kJ·mol-1
[41]
QCu
Activation energy of Cu in α-Fe
284
kJ·mol-1
[41]
vFe
Poisson ratio of Fe
0.291
[41]
vCu
Poisson ratio of Cu
0.345
[41]
GFe
Shear modulus of Fe
89334 - 29.688T
GPa
[30]
GCu
Shear modulus of Cu
44689 - 15.936T
GPa
[30]
k
Boltzmann constant
1.38 × 10-23
J·K-1
不同温度下(Ti, Mo)C与<i>ε</i>-Cu在铁素体中析出热/动力学的计算结果
(a) Ti/Mo atomic ratio and x (b) driving force (c) PTT curves (d) solid solution content ...
Thermal expansion of some transition metal carbides
1
1958
... Parameters used in calculations[29,30,35-41]Table 1
Symbol
Description
Magnitude
Unit
Ref.
aTiC
Lattice constant of TiC at room temperature
0.433
nm
[29]
aMoC
Lattice constant of MoC at room temperature
0.428
nm
[35]
aCu
Lattice constant of ε-Cu at room temperature
0.362
nm
[36]
aFe
Lattice constant of α-Fe at room temperature
0.287
nm
αTiC
Linear expansion coefficient of TiC
7.86 × 10-6
K-1
[37]
αMoC
Linear expansion coefficient of MoC
6.88 × 10-6
K-1
[38]
αCu
Linear expansion coefficient of Cu
16.5 × 10-6
K-1
[39]
QTi
Activation energy of Ti in α-Fe
248
kJ·mol-1
[40]
QMo
Activation energy of Mo in α-Fe
229
kJ·mol-1
[41]
QCu
Activation energy of Cu in α-Fe
284
kJ·mol-1
[41]
vFe
Poisson ratio of Fe
0.291
[41]
vCu
Poisson ratio of Cu
0.345
[41]
GFe
Shear modulus of Fe
89334 - 29.688T
GPa
[30]
GCu
Shear modulus of Cu
44689 - 15.936T
GPa
[30]
k
Boltzmann constant
1.38 × 10-23
J·K-1
不同温度下(Ti, Mo)C与<i>ε</i>-Cu在铁素体中析出热/动力学的计算结果
(a) Ti/Mo atomic ratio and x (b) driving force (c) PTT curves (d) solid solution content ...
First-principles calculations of hydrostatic pressure effects on the structural, elastic and thermodynamic properties of cubic monocarbides XC (X = Ti, V, Cr, Nb, Mo, Hf)
1
2012
... Parameters used in calculations[29,30,35-41]Table 1
Symbol
Description
Magnitude
Unit
Ref.
aTiC
Lattice constant of TiC at room temperature
0.433
nm
[29]
aMoC
Lattice constant of MoC at room temperature
0.428
nm
[35]
aCu
Lattice constant of ε-Cu at room temperature
0.362
nm
[36]
aFe
Lattice constant of α-Fe at room temperature
0.287
nm
αTiC
Linear expansion coefficient of TiC
7.86 × 10-6
K-1
[37]
αMoC
Linear expansion coefficient of MoC
6.88 × 10-6
K-1
[38]
αCu
Linear expansion coefficient of Cu
16.5 × 10-6
K-1
[39]
QTi
Activation energy of Ti in α-Fe
248
kJ·mol-1
[40]
QMo
Activation energy of Mo in α-Fe
229
kJ·mol-1
[41]
QCu
Activation energy of Cu in α-Fe
284
kJ·mol-1
[41]
vFe
Poisson ratio of Fe
0.291
[41]
vCu
Poisson ratio of Cu
0.345
[41]
GFe
Shear modulus of Fe
89334 - 29.688T
GPa
[30]
GCu
Shear modulus of Cu
44689 - 15.936T
GPa
[30]
k
Boltzmann constant
1.38 × 10-23
J·K-1
不同温度下(Ti, Mo)C与<i>ε</i>-Cu在铁素体中析出热/动力学的计算结果
(a) Ti/Mo atomic ratio and x (b) driving force (c) PTT curves (d) solid solution content ...
Thermal expansion of reference materials: Copper, silica and silicon
1
1973
... Parameters used in calculations[29,30,35-41]Table 1
Symbol
Description
Magnitude
Unit
Ref.
aTiC
Lattice constant of TiC at room temperature
0.433
nm
[29]
aMoC
Lattice constant of MoC at room temperature
0.428
nm
[35]
aCu
Lattice constant of ε-Cu at room temperature
0.362
nm
[36]
aFe
Lattice constant of α-Fe at room temperature
0.287
nm
αTiC
Linear expansion coefficient of TiC
7.86 × 10-6
K-1
[37]
αMoC
Linear expansion coefficient of MoC
6.88 × 10-6
K-1
[38]
αCu
Linear expansion coefficient of Cu
16.5 × 10-6
K-1
[39]
QTi
Activation energy of Ti in α-Fe
248
kJ·mol-1
[40]
QMo
Activation energy of Mo in α-Fe
229
kJ·mol-1
[41]
QCu
Activation energy of Cu in α-Fe
284
kJ·mol-1
[41]
vFe
Poisson ratio of Fe
0.291
[41]
vCu
Poisson ratio of Cu
0.345
[41]
GFe
Shear modulus of Fe
89334 - 29.688T
GPa
[30]
GCu
Shear modulus of Cu
44689 - 15.936T
GPa
[30]
k
Boltzmann constant
1.38 × 10-23
J·K-1
不同温度下(Ti, Mo)C与<i>ε</i>-Cu在铁素体中析出热/动力学的计算结果
(a) Ti/Mo atomic ratio and x (b) driving force (c) PTT curves (d) solid solution content ...
Solubility and diffusion of titanium in iron
1
1959
... Parameters used in calculations[29,30,35-41]Table 1
Symbol
Description
Magnitude
Unit
Ref.
aTiC
Lattice constant of TiC at room temperature
0.433
nm
[29]
aMoC
Lattice constant of MoC at room temperature
0.428
nm
[35]
aCu
Lattice constant of ε-Cu at room temperature
0.362
nm
[36]
aFe
Lattice constant of α-Fe at room temperature
0.287
nm
αTiC
Linear expansion coefficient of TiC
7.86 × 10-6
K-1
[37]
αMoC
Linear expansion coefficient of MoC
6.88 × 10-6
K-1
[38]
αCu
Linear expansion coefficient of Cu
16.5 × 10-6
K-1
[39]
QTi
Activation energy of Ti in α-Fe
248
kJ·mol-1
[40]
QMo
Activation energy of Mo in α-Fe
229
kJ·mol-1
[41]
QCu
Activation energy of Cu in α-Fe
284
kJ·mol-1
[41]
vFe
Poisson ratio of Fe
0.291
[41]
vCu
Poisson ratio of Cu
0.345
[41]
GFe
Shear modulus of Fe
89334 - 29.688T
GPa
[30]
GCu
Shear modulus of Cu
44689 - 15.936T
GPa
[30]
k
Boltzmann constant
1.38 × 10-23
J·K-1
不同温度下(Ti, Mo)C与<i>ε</i>-Cu在铁素体中析出热/动力学的计算结果
(a) Ti/Mo atomic ratio and x (b) driving force (c) PTT curves (d) solid solution content ...
... Parameters used in calculations[29,30,35-41] ...
... [41]QCuActivation energy of Cu in α-Fe284kJ·mol-1[41]vFePoisson ratio of Fe0.291[41]vCuPoisson ratio of Cu0.345[41]GFeShear modulus of Fe89334 - 29.688TGPa[30]GCuShear modulus of Cu44689 - 15.936TGPa[30]kBoltzmann constant1.38 × 10-23J·K-1不同温度下(Ti, Mo)C与<i>ε</i>-Cu在铁素体中析出热/动力学的计算结果
(a) Ti/Mo atomic ratio and x (b) driving force (c) PTT curves (d) solid solution content ...
... [41]vFePoisson ratio of Fe0.291[41]vCuPoisson ratio of Cu0.345[41]GFeShear modulus of Fe89334 - 29.688TGPa[30]GCuShear modulus of Cu44689 - 15.936TGPa[30]kBoltzmann constant1.38 × 10-23J·K-1不同温度下(Ti, Mo)C与<i>ε</i>-Cu在铁素体中析出热/动力学的计算结果
(a) Ti/Mo atomic ratio and x (b) driving force (c) PTT curves (d) solid solution content ...
... [41]vCuPoisson ratio of Cu0.345[41]GFeShear modulus of Fe89334 - 29.688TGPa[30]GCuShear modulus of Cu44689 - 15.936TGPa[30]kBoltzmann constant1.38 × 10-23J·K-1不同温度下(Ti, Mo)C与<i>ε</i>-Cu在铁素体中析出热/动力学的计算结果
(a) Ti/Mo atomic ratio and x (b) driving force (c) PTT curves (d) solid solution content ...
... [41]GFeShear modulus of Fe89334 - 29.688TGPa[30]GCuShear modulus of Cu44689 - 15.936TGPa[30]kBoltzmann constant1.38 × 10-23J·K-1不同温度下(Ti, Mo)C与<i>ε</i>-Cu在铁素体中析出热/动力学的计算结果
(a) Ti/Mo atomic ratio and x (b) driving force (c) PTT curves (d) solid solution content ...
Effects of hot-deformation on grain boundary precipitation and segregation in Ti-Mo microalloyed steels