Please wait a minute...
金属学报  2013, Vol. 49 Issue (9): 1098-1104    DOI: 10.3724/SP.J.1037.2013.00273
  论文 本期目录 | 过刊浏览 |
木素磺酸钙模板法液相合成花簇状ZnO及其光催化性能
王晓红1,2),谢文静1),郝臣1),张鹏飞1),傅小奇1),司乃潮2)
1) 江苏大学化学化工学院, 镇江 212013
2) 江苏大学材料科学与工程学院, 镇江 212013
LIQUID PHASE SYNTHESIS OF FLOWER CLUSTER-LIKE ZnO VIA LIGNOSITE TEMPLATE AND ITS PHOTOCATALYTIC PROPERTY
WANG Xiaohong1,2), XIE Wenjing1), HAO Chen1), ZHANG Pengfei1), FU Xiaoqi1), SI Naichao 2)
1) School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013
2) School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013
引用本文:

王晓红,谢文静,郝臣,张鹏飞,傅小奇,司乃潮. 木素磺酸钙模板法液相合成花簇状ZnO及其光催化性能[J]. 金属学报, 2013, 49(9): 1098-1104.
WANG Xiaohong, XIE Wenjing, HAO Chen, ZHANG Pengfei, FU Xiaoqi, SI Naichao. LIQUID PHASE SYNTHESIS OF FLOWER CLUSTER-LIKE ZnO VIA LIGNOSITE TEMPLATE AND ITS PHOTOCATALYTIC PROPERTY[J]. Acta Metall Sin, 2013, 49(9): 1098-1104.

全文: PDF(1302 KB)  
摘要: 

采用液相沉淀法合成了花簇状纳米ZnO, 利用FT-IR, UV-DRS, XRD, SEM/EDS,BET等技术对所制备的ZnO进行表征, 研究了木素磺酸钙(LS)对纳米ZnO结构和形貌的影响.以甲基橙脱色降解为模型反应, 考察了掺杂木素磺酸钙及不同煅烧温度对ZnO的物理结构和光催化脱色性能的影响.结果表明, 掺杂木素磺酸钙能明显改变ZnO形貌, 改善表面状态, 使其比表面积增加, 表面产生更多的羟基.煅烧后的木素磺酸钙掺杂ZnO较未掺杂样品具有更好的光催化活性.煅烧温度对光催化剂的晶体结构、表面性能和光催化活性产生较大影响,300℃煅烧处理后样品的结晶度较高, 颗粒粒径较细, 光催化活性较好.

关键词 纳米ZnO木素磺酸钙光催化甲基橙    
Abstract

In recent years, increasing interest has been concentrated in the treatment of organic pollutants in wastewater or sewage by means of photocatalysis based on semiconductor nano-catalysts. Photocatalysis is a very potential method for the complete destruction of contaminants and wide selection of target polluted compounds. ZnO as a very efficient metal oxide semiconductor photocatalyst has been studied extensively since found. Owing to its abundant availability, cost effectiveness, non-toxicity, reusability, high photo-sensitivity and excellent chemical stability, wide band gap and large excitation binding energy at room temperature, ZnO displays a promising application. Organic pollution in water can be significantly reduced when ZnO is used as photocatalyst and secondary pollution could be avoided by the mineralization of inorganic ions, which is quite attractive in the field of environmental protection technology. In this work, the purpose was to use inexpensive lignosite from low-priced resources of lignin as surfactant, template and nucleating promoter to prepare nanocrystalline ZnO to cut down the synthesis cost. Flower cluster-like nanometer ZnO photocatalysts doped with different amounts of lignosite were prepared by liquid-phase precipitation. The prepared pure ZnO and lignosite-doped ZnO(ZnO-LS) samples were characterized by FT-IR, UV-Vis diffusion refraction spectroscopy (UV-DRS), XRD, SEM/EDS and BET. The photocatalytic activity of the samples was evaluated by the photodegradation of methyl orange under UV light irradiation. The results showed that lignosite doping significantly altered the morphology of ZnO, improved zinc oxide surface state, increased the specific surface area, made ZnO produce more hydroxyl on the surface, and was helpful to obtain petal-like ZnO. On the other hand, the calcinations temperatures influenced the crystallinity and crystal size of the photocatalysts. The tests indicated that the sample calcined at 300℃ had good crystallinity and a small crystal size. At the optimal calcinations temperature of 300℃ and when LS-doping quality is 2 g, the petal ZnO composite photocatalysts had smaller band gap width and much higher photocatalytic activity than the pure ZnO and those ZnO-LS (LS was other quality). The high photocatalytic performance of ZnO doped with the lignosite could be attributed to an increase in surface hydroxyl groups and high crystallinity.The obtained results show that the photocatalytic efficiency of the optimal ZnO-LS was superior to commercially available TiO2 Degussa P-25 for the photodegradation of methyl orange.

Key wordsnanometer zinc oxide    lignosite    photocatalysis    methyl orange
收稿日期: 2013-05-21     
基金资助:

国家自然科学基金项目21075054, 生命分析化学国家重点实验室(南京大学)开放基金项目KLACLS1010, 江苏省教育厅项目12KJD610003, 江苏省自然科学基金项目SBK201322000和中国博士后基金项目2012M510123资助

作者简介: 王晓红, 女, 1971生, 副教授

[1] Zhang Y R, Wan J, Ke Y Q.  J Hazard Mater, 2010; 177: 750

[2] Yu C L, Fan C F, Yu J C, Zhou W Q, Yang K.  Mater Res Bull, 2011; 46: 140
[3] Yu C L, Cai D J, Yang K, Yu J C, Zhou Y, Fan C F.  J Phys Chem Solids, 2010; 71: 1337
[4] Wang Y X, Li X, Lu G, Quan X, Chen G H.  J Phys Chem, 2008; 112C: 7332
[5] Khodja A A, Sehili T, Pilichowski J F, Boule P.  J Photochem Photobiol, 2001; 141A: 231
[6] Seipel B, Nadarajah A, Wutzke B, Konenkamp R.  Mater Lett, 2009; 63: 736
[7] Kumar V R, Wariar P R S, Prasad V S, Koshy J.  Mater Lett, 2011; 65: 2059
[8] Huang H, Zhu M W, Gong J, Sun C, Jiang X.  Acta Metall Sin, 2007; 43: 1043
(黄辉, 朱明伟, 宫骏, 孙超, 姜辛. 金属学报, 2007; 43: 1043)
[9] Chandrasekaran P, Viruthagiri G, Srinivasan N.  J Alloys Compd, 2012; 540: 89
[10] Zhou H M, Yi D Q, Yu Z M, Xiao L R, Li J, Wang B.  Acta Metall Sin, 2006; 42: 505
(周宏明, 易丹青, 余志明, 肖来荣, 李荐, 王斌. 金属学报, 2006; 42: 505)
[11] Khanh N Q, Lukacs I, Safran G Y, Erdelyi R,Fulop E, Deak A, Volk K.  J Mater Lett, 2012; 79: 242
[12] Wang X H, Hao C.  J Jiangsu Univ (Nat Sci Ed), 2007; 28: 528
(王晓红, 郝臣. 江苏大学学报(自然科学版), 2007; 28: 528)
[13] Ouyang X P, Qiu X Q, Chen P.  Colloids Surf, 2006; 282/283: 489
[14] Kamoun A, Jelidi A, Chaabouni M.  Cement Concrete Res, 2003; 33: 995
[15] Aimi H, Ohmura S, Uetake M.  J Wood Sci, 2009; 55: 121
[16] Milczarek G.  J Electroanal Chem, 2010; 638: 178
[17] Kai W H, He Y, Asakawa N, Inoue Y.  J Appl Polym Sci, 2004; 94: 2466
[18] Adcock T, Shah V, Chen M J, Meister J J.  J Appl Polym Sci, 2003; 89: 1266
[19] Gui M S, Zhang W D.  Nanotechnology, 2011; 22: 1
[20] Saif M, Hafez H, Nabeel A I.  Chemosphere, 2013; 90: 840
[21] Fu H B, Zhang S C, Xu T G, Zhu R F, Chen J M.  Environ Sci Technol, 2008; 42: 2085
[22] Fu D Y, Han G Y, Chang Y Z, Dong J H.  Mater Chem Phys, 2012; 132: 673
[23] Xie J, Wang H, Duan M, Zhang L H.  Appl Surf Sci, 2011; 257: 6358
[24] Sun L J.  PhD Dissertation, Hefei: University of Science and Technology of China, 2010
(孙利杰. 中国科学技术大学博士学位论文, 合肥, 2010)
[25] Ma S S, Li R, Lv C P, Xu W, Gou X L.  J Hazard Mater, 2011; 92: 730
[26] Ahmad M, Ahmed E, Zhang Y W, Khalid N R, Xu J F, Ullah M, Hong Z L.
 Curr Appl Phys, 2013; 13: 697
[1] 张霞, 宋扬, 王誉, 纪逯鹤, 杨媚, 孟皓. 超声共混合成Ni(HNCN)2/BiVO4复合可见光催化剂[J]. 金属学报, 2020, 56(11): 1551-1557.
[2] 荣凤鸣, 王誉, 张霞. 基于氰胺锌的复合光催化剂的结构与可见光催化性能[J]. 金属学报, 2018, 54(1): 76-82.
[3] 张婷婷,祁阳,刘刚,刘鸣华. 形貌可控NaNbO3的生长机理和光催化性能[J]. 金属学报, 2017, 53(3): 376-384.
[4] 祁洪飞, 刘大博, 滕乐金, 王天民, 罗飞, 田野. Au反点阵列孔径对Au/TiO2复合薄膜光催化性能的影响[J]. 金属学报, 2014, 50(10): 1163-1169.
[5] 邵忠财; 李晓丹; 苏会东; 魏守强; 翟玉春 . 微弧氧化+电解液修饰法制备TiO2薄膜的光催化性能[J]. 金属学报, 2008, 44(10): 1238-1242 .