Please wait a minute...
金属学报  2016, Vol. 52 Issue (3): 341-348    DOI: 10.11900/0412.1961.2015.00385
  论文 本期目录 | 过刊浏览 |
阳极氧化铝膜中间层阻挡元素扩散研究*
黄祖江1,周敏1,2,杨阳1,陈泉志1,唐仕光1,李伟洲1()
1 广西大学材料科学与工程学院, 南宁 530004
2 富士康科技集团, 深圳 518109
STUDY OF ANODIC ALUMINUM OXIDE FILM AS AN INTERLAYER TO SUPPRESS ELEMENT DIFFUSION
Zujiang HUANG1,Min ZHOU1,2,Yang YANG1,Quanzhi CHEN1,Shiguang TANG1,Weizhou LI1()
1 School of Materials Science and Engineering, Guangxi University, Nanning 530004, China
2 Foxconn Technology Group, Shenzhen 518109, China
引用本文:

黄祖江, 周敏, 杨阳, 陈泉志, 唐仕光, 李伟洲. 阳极氧化铝膜中间层阻挡元素扩散研究*[J]. 金属学报, 2016, 52(3): 341-348.
Zujiang HUANG, Min ZHOU, Yang YANG, Quanzhi CHEN, Shiguang TANG, Weizhou LI. STUDY OF ANODIC ALUMINUM OXIDE FILM AS AN INTERLAYER TO SUPPRESS ELEMENT DIFFUSION[J]. Acta Metall Sin, 2016, 52(3): 341-348.

全文: PDF(4119 KB)   HTML
摘要: 

对铌合金C103基体上真空蒸镀的Al膜进行阳极氧化处理获得阳极氧化铝(AAO)膜, 利用电镀技术在AAO膜上制备Ni表层, 通过高温处理研究元素通过AAO膜的扩散行为. 结果表明: 没有中间层的Ni/C103及以纯Al膜作为中间层的Ni/Al/C103样品, 涂层和基体间的元素扩散严重; 而以AAO膜为中间层的Ni/AAO/C103样品, 涂层和基体间的元素扩散受到明显抑制. 经900 ℃热处理后, Ni/C103, Ni/Al/C103及Ni/AAO/C103样品其外层中Nb含量分别为7.05%, 5.08%和3.55%; 基体中的Ni含量分别为6.84%, 3.62%和2.85%; AAO膜作为中间层有较强的元素扩散阻挡能力. 在900 ℃退火后, Ni/C103和Ni/Al/C103样品表面均生成了NbNi3相, 而Ni/AAO/C103样品并未出现Nb和Ni的反应生成物. 通过Fick定律计算得知, 900 ℃时Ni在AAO膜的扩散系数为3.28×10-14 m2/s, Nb为2.16×10-14 m2/s; 1000 ℃时Ni的扩散系数上升至1.03×10-13 m2/s, Nb为3.58×10-14 m2/s.

关键词 阳极氧化铝(AAO)膜扩散阻挡层多孔结构Fick定律扩散系数    
Abstract

Element interdiffusion will accelerate failure of surface coating systems after a long time service at high temperature. To extend service life of the coatings, developing a diffusion barrier between the coating and the substrate is considered as an efficient way. Many research results showed that a diffusion barrier with single function such as metallic or ceramic one can not meet requirements for strong barrier ability and strong interfacial strength of the coatings onto the substrate at the same time. Anodic aluminum oxide (AAO) film with porous surface structure, which has an effective role for element diffusion so as to strengthen the interfacial adhesion rapidly, and a dense Al2O3 sublayer to suppress the interdiffusion was effectively used as diffusion barrier in this work and interdiffusion barrier ability was investigated. The AAO film was obtained by anodizing Al film deposited on C103 niobium alloy by vacuum evaporation technology, and an electroplating Ni plating was prepared as an overlayer. Vacuum heat treatment was applied to promote element diffusion. The results indicated that substantial diffusion occurred in the Ni/C103 specimen without an interlayer and in the Ni/Al/C103 specimen with Al film as an interlayer. In the Ni/AAO/C103 specimen, hardly any interdiffusion was observed. After 4 h vacuum annealing at 900 ℃, NbNi3 phase was detected on the Ni/C103 and Ni/Al/C103 specimens, which could not be found in the Ni/AAO/C103 specimen. Nb content in the Ni overlayer of Ni/C103, Ni/Al/C103 and Ni/AAO/C103 specimens was 7.05%, 5.08% and 3.55%, respectively. Ni content in the substrate of Ni/C103, Ni/Al/C103 and Ni/AAO/C103 specimens diffusing from the overlayer was 6.84%, 3.62% and 2.85%, respectively. Thus, AAO film exhibited strong barrier ability in suppressing element diffusion. From calculation of the Fick's law, it was found that diffusion coefficient of Ni and Nb in the AAO film at 900 ℃ was 3.28×10-14 m2/s and 2.16×10-14 m2/s, respectively, and it was raised to 1.03×10-13 m2/s and 3.58×10-14 m2/s at 1000 ℃, respectively.

Key wordsanodic aluminum oxide (AAO) film    diffusion barrier    porous structure    Fick's law    diffusion coefficient
收稿日期: 2015-07-13     
基金资助:* 国家自然科学基金项目51371059, 51361003和51001032, 广西自然科学基金项目2014GXNSFCA118013, 广西高等学校高水平创新团队项目(第二批), 以及广西自然科学基金创新研究团队项目2011GXNSFF018001资助
图1  阳极氧化铝(AAO)膜中间层EDS取点示意图
图2  经过真空蒸镀,阳极氧化和电镀Ni后沉积态涂层表面的SEM像
图3  含或不含中间层样品的沉积态涂层XRD谱
图4  900和1000 ℃保温4 h后退火态涂层的表面SEM像
图5  900和1000 ℃保温4 h后退火态涂层的XRD谱
图6  900 ℃热处理4 h 后的试样扩散截面SEM像及EDS分析选区
表1  图6 中扩散截面不同区域的EDS分析结果
图7  Ni/AAO/C103 样品的沉积态及900 和1000 ℃退火后的扩散截面不同距离的Ni 和Nb原子分数
表2  Ni/AAO/C103 样品900 和1000 ℃退火后中间层的Ni 和Nb元素扩散系数
图8  Ni/AAO/C103 样品900 和1000 ℃退火后中间层Ni 和Nb元素的Z拟合
[1] Wang X Y, Xin L, Wei H, Zhu S L, Wang F H.Corros Sci Prot Technol, 2013; 25: 175
[1] (王心悦, 辛丽, 韦华, 朱圣龙, 王福会. 腐蚀科学与防护技术, 2013; 25: 175)
[2] Liu Q, Yang Y F, Bao Z B, Zhu S L, Wang F H.Acta Metall Sin, 2014; 50: 1102
[2] (柳泉, 阳颖飞, 鲍泽斌, 朱圣龙, 王福会. 金属学报, 2014; 50: 1102)
[3] Li M H, Zhang Z Y, Sun X F, Li J G, Yin F S, Hu W Y, Guan H R, Hu Z Q.Surf Coat Technol, 2003; 165: 241
[4] Li S, Song J, Zhou C.Intermetallics, 2005; 13: 309
[5] Li H Q, Gong J, Sun C.Acta Metall Sin, 2012; 48: 579
[5] (李海庆, 宫骏, 孙超. 金属学报, 2012; 48: 579)
[6] van der Zwaag S. Self Healing Materials: an Alternative Approach to 20 Centuries of Materials Science. Dordrecht: Springer, 2007: 309
[7] Li W Z, Wang Q M, Gong J, Sun C, Jiang X.Acta Metall Sin, 2010; 46: 561
[7] (李伟洲, 王启民, 宫骏, 孙超, 姜辛. 金属学报, 2010; 46: 561)
[8] Li W Z, Wang Q M, Sun C.Mater Rev, 2009; 23(5): 30
[8] (李伟洲, 王启民, 孙超. 材料导报, 2009; 23(5): 30)
[9] Li W Z, Li Y Q, Wang Q M, Sun C, Jiang X.Corros Sci, 2010; 52: 1753
[10] Ma J, Jiang S M, Gong J, Sun C.Corros Sci, 2011; 53: 2894
[11] Lou H Y, Wang F H.Vacuum, 1992; 43: 757
[12] Haynes J A, Zhang Y, Cooley K M, Walker L, Reeves K S, Pint B A.Surf Coat Technol, 2004; 188: 153
[13] Song Y X, Murakami H, Zhou C G.J Mater Sci Technol, 2011; 27: 280
[14] Wang Y, Guo H B, Peng H, Peng L Q, Gong S K.Intermetallics, 2011; 19: 191
[15] Wang Q M, Zhang K, Gong J, Gui Y Y, Sun C, Wen L S.Acta Mater, 2007; 55: 1427
[16] Li H Q, Wang Q M, Jiang S M, Ma J, Gong J, Sun C.Corros Sci, 2011; 53: 1097
[17] Cheng Y X, Wang W, Zhu S L, Xin L, Wang F H.Intermetallics, 2010; 18: 736
[18] Li W Z, Yao Y, Li Y Q, Li J B, Sun C, Jiang X.Mater Sci Eng, 2009; A512: 117
[19] Heuer A H.J Eur Ceram Soc, 2008; 28: 1495
[20] Cui J W, Wu Y C, Wang Y, Zheng H M, Xu G Q, Zhang X Y.Appl Surf Sci, 2012; 258: 5305
[21] Poinern G E J, Ali N, Fawcett D.Materials, 2011; 4: 487
[22] McQuang M K, Toro A, Geertruyden W V, Misiolek W Z.J Mater Sci, 2011; 46: 243
[23] Belwalkar A, Grasing E, Geertruyden V W, Huang Z, Misiolek W Z.J Membr Sci, 2008; 319: 192
[24] Li F Y, Zhang L, Metzger R M.Chem Mater, 1998; 10: 2470
[25] Galstyan V, Comini E, Faglia G, Sberveglieri G.Cryst Eng Comm, 2014; 16: 10273
[26] Tzvetkov B T, Bojinov M S, Girginov A A.Bulg Chem Commun, 2008; 40: 261
[1] 王寒玉, 李彩, 赵璨, 曾涛, 王祖敏, 黄远. 基于纳米活性结构的不互溶W-Cu体系直接合金化及其热力学机制[J]. 金属学报, 2023, 59(5): 679-692.
[2] 刘远荣,陈伟民,汤颖,杜勇,张利军. 实用型数值回归法在三元铝合金互扩散系数计算中的应用*[J]. 金属学报, 2016, 52(8): 1009-1016.
[3] 张立东,王飞,陈顺礼,汪渊. AlCrTaTiNi/(AlCrTaTiNi)N双层扩散阻挡层的制备及热稳定性[J]. 金属学报, 2013, 49(12): 1611-1616.
[4] 张金玲,冯芝勇,胡兰青,王社斌,许并社. 不同La含量AZ91合金的时效硬化行为[J]. 金属学报, 2012, 48(5): 607-614.
[5] 李海庆,宫骏,孙超. NiCrAlY/Al--Al2O3/Ti2AlNb高温抗氧化和力学性能研究[J]. 金属学报, 2012, 48(5): 579-586.
[6] 刘明治 张瑞杰 方伟 章书周 曲选辉. 相场法模拟两相多孔组织烧结[J]. 金属学报, 2012, 48(10): 1207-1214.
[7] 陈业新 常庆刚. 20g纯净钢中氢陷阱对氢扩散系数的作用[J]. 金属学报, 2011, 47(5): 548-552.
[8] 张露 石南林 宫骏 裴志亮 高立军 孙超. SiC长纤维表面(Al+Al2O3)复合涂层的制备[J]. 金属学报, 2011, 47(4): 497-501.
[9] 杨巍 汪爱英 柯培玲 蒋百灵. 镁基表面微弧氧化/类金刚石膜的性能表征[J]. 金属学报, 2011, 47(12): 1535-1540.
[10] 李均明 薛晓楠 蔡辉 蒋百灵. 多孔结构MgO表面化学镀Ni层的制备与表征[J]. 金属学报, 2010, 46(9): 1103-1108.
[11] 李伟洲 王启民 宫骏 孙超 姜辛. 一步法制备含扩散阻挡层的多层体系及其界面结合强度[J]. 金属学报, 2010, 46(5): 561-568.
[12] 高运明 宋建新 张业勤 郭兴敏. 利用电化学方法测定高温银液中氧的扩散系数[J]. 金属学报, 2010, 46(3): 277-281.
[13] 蔡辉 王菲 王亚平 宋晓平 丁秉钧. Si粉表面溶胶-凝胶预处理制备Cu/Si复合材料[J]. 金属学报, 2009, 45(10): 1261-1266.
[14] 姚勇; 李伟洲; 王启民; 宫骏; 孙超; 李家宝 . Cr-O-N 扩散阻挡层对 NiCrAlY 涂层结合性能的影响[J]. 金属学报, 2008, 44(7): 876-882 .
[15] 陈国安; 杨王玥; 孙祖庆; 张湘义 . 中碳钢过冷奥氏体形变过程中碳的分布与扩散[J]. 金属学报, 2007, 43(8): 785-790 .