Please wait a minute...
金属学报  2012, Vol. 48 Issue (11): 1365-1373    DOI: 10.3724/SP.J.1037.2011.00773
  论文 本期目录 | 过刊浏览 |
HCO3-和Cl-混合体系中Cu的点蚀行为研究
王长罡, 董俊华, 柯伟, 陈楠, 李晓芳
中国科学院金属研究所金属腐蚀与防护国家重点实验室, 沈阳 110016
RESEARCH ON PITTING CORROSION BEHAVIOR OF COPPER IN THE SOLUTION WITH HCO3- AND Cl-
WANG Changgang, DONG Junhua, KE Wei, CHEN Nan, LI Xiaofang
State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

王长罡 董俊华 柯伟 陈楠 李晓芳. HCO3-和Cl-混合体系中Cu的点蚀行为研究[J]. 金属学报, 2012, 48(11): 1365-1373.
WANG Changgang DONG Junhua KE Wei CHEN Nan LI Xiaofang. RESEARCH ON PITTING CORROSION BEHAVIOR OF COPPER IN THE SOLUTION WITH HCO3- AND Cl-[J]. Acta Metall Sin, 2012, 48(11): 1365-1373.

全文: PDF(1068 KB)  
摘要: 

在HCO3-和Cl-浓度不同的溶液中, 用循环极化的电化学测试方法和SEM, 对Cu的循环极化行为和点蚀表面形貌进行了研究. 结果表明, 该体系中Cu的腐蚀行为可概括为活性溶解型腐蚀、钝化型腐蚀、活性溶解型点蚀和钝化膜破裂型点蚀等4种类型; 在HCO3- 或Cl-单独存在环境中, Cu表面不发生点蚀, 只有Cl-和 HCO3-共同存在且起协同作用时, Cu表面才发生点蚀; 活性溶解型点蚀区域中, 点蚀敏感性随Cl-浓度的升高而增大, 而随HCO3- 浓度的升高先增大后减小; 钝化膜破裂型点蚀区域中, 点蚀敏感性随Cl-浓度的升高和HCO3-浓度的降低而增大.

关键词 高放废物Cu点蚀循环极化HCO3-Cl-    
Abstract

The strategy for disposal of high-level radioactive waste in china is to enclose the spent nuclear fuel in sealed metal canisters which are embedded in bentonite clay hundreds meters down in the be-rock. The choice of container material depends largely on the redox conditions and the aqueous environment of the repository. One of the choices for the fabrication of waste canisters is copper, because it is thermodynamically stable under the saline, anoxic conditions over the large majority of the container lifetime. However, in the early aerobic phase of the geological disposal the corrosion of copper could take place, and the corrosion behavior of copper would be influenced by the complex chemical conditions of groundwater markedly. Pitting corrosion of copper often takes place in power plants or air-conditioning condensate water. The corrosion environment usually contains HCO3-, SO42- and Cl-. In the early stage of geological disposal, if the aerobic water with HCO3- , SO42- and Cl- immersion repository, the pitting corrosion of copper may occur. Some researchers believed that SO42- and Cl- would promote the occurrence of pitting corrosion of copper, and HCO3- will lead to surface passivation and inhibit pitting. It is considered that in the solution with HCO3- and SO42-, HCO3- could firstly promote and then inhibit pitting. However, there is no systematic work about pitting in the solution with HCO3- and Cl-. In this work, the cycle polarization behavior and surface morphology of pitting on copper has been investigated in HCO3- and Cl- mixed solution, respectively by electrochemical cyclic polarization test and SEM. The results showed that the circular polarization curves of copper could be divided into four types. The pitting on the surface of copper occurs only in the environment with both Cl- and HCO3-. In the area of active dissolve pitting, the pitting susceptibility increased with the increase of concentration of Cl-, while it increased then decreased with the increase of the concentration of HCO3-. In the area of passive film rupture pitting area, pitting susceptibility increased with the increase of concentration of Cl- and with the decrease of the concentration of HCO3-.

Key wordshigh-level radioactive waste    Cu    pitting    cyclic polarization    HCO3-    Cl-
收稿日期: 2011-12-08     
基金资助:

国家自然科学基金资助项目51071160

作者简介: 王长罡, 男, 1985年生, 博士生

[1] Wang C G, Dong J H, Ke W, Chen N. Acta Metall Sin, 2011; 47: 354

(王长罡, 董俊华, 柯 \ \ 伟, 陈楠, 金属学报, 2011; 47: 354)

[2] Darren A, Lytle A, Mallikarjuna N, Nadagouda B. Corros Sci, 2010; 52: 1927

[3] Guo Y H, Wang J, Wang ZM, Liu S F, Su Y. Bull Mineral Petrol Geochem, 2007; 26: 607

(郭永海, 王 驹, 王志明, 刘淑芬, 苏 锐. 矿物岩石地球化学通报, 2007; 26: 607)

[4] Fujii T, Kodama T, Baba H. Corros Sci, 1984; 24: 901

[5] Drogowska M, Brossard L, M´enard H. Surf Coat Technol, 1988; 34: 383

[6] Drogowska M, Brossard L, M´enard H. J Electrochem Soc, 1992; 139: 39

[7] Duthil J P, Mankowski G, Giusti A. Corros Sci, 1996; 38: 1839

[8] Reda M R, Alhajji J N. Corrosion, 1996; 52: 232

[9] Cantor A F, Park J K, Vaiyavatjamai P. J Am Water Works Assoc, 2003; 95(5): 112

[10] Baba H, Kodama T, Fujii T. Trans Natl Res Inst Met, 1986; 28: 248

[11] Christy A G, Lowe A, Otieno–Alego V, Stoll M, Webster R D. J Appl Electrochem, 2004; 34: 225

[12] Edwards M, Ferguson J F, Reiber S H. J AmWaterWorksAssoc, 1994; 86(7): 74

[13] Sosa M, Patel S, Edwards M. Corrosion, 1999; 55: 1069

[14] Edwards M, Rehring J, Mayer T. Corrosion, 1994; 50: 366

[15] Cong H, Scully J R. J Electrochem Soc, 2010; 157: C200

[16] Nishikata A, Itagaki M, Tsuru T, Haruyama S. Corros Sci, 1990; 31: 287

[17] Jujii T. Trans Natl Res Inst Met, 1988; 30(2): 81

[18] Drogowska M, Brossard L, M´enard H. J Electrochem Soc, 1992; 139: 39

[19] Wang C G, Dong J H, Ke W, Chen N. Acta Metall Sin, 2012; 48: 85

(王长罡, 董俊华, 柯伟, 陈 楠. 金属学报, 2012; 48: 85)

[20] Abd El Meguid E A, Awad N K. Corros Sci, 2009; 51: 1134

[21] Ding J, Lin H C, Cao C N. Corros Sci Prot Technol, 2002; 14: 67

(丁杰, 林海潮, 曹楚南. 腐蚀科学与防护技术, 2002; 14: 67)

[1] 陈润农, 李昭东, 曹燕光, 张启富, 李晓刚. 9%Cr合金钢在含Cl环境中的初期腐蚀行为及局部腐蚀起源[J]. 金属学报, 2023, 59(7): 926-938.
[2] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[3] 张奇亮, 王玉超, 李光达, 李先军, 黄一, 徐云泽. EH36钢在不同粒径沙砾冲击下的冲刷腐蚀耦合损伤行为[J]. 金属学报, 2023, 59(7): 893-904.
[4] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[5] 王寒玉, 李彩, 赵璨, 曾涛, 王祖敏, 黄远. 基于纳米活性结构的不互溶W-Cu体系直接合金化及其热力学机制[J]. 金属学报, 2023, 59(5): 679-692.
[6] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[7] 许林杰, 刘徽, 任玲, 杨柯. CuNi-Ti合金抗支架内再狭窄与耐蚀性能的影响[J]. 金属学报, 2023, 59(4): 577-584.
[8] 万涛, 程钊, 卢磊. 组元占比对层状纳米孪晶Cu力学行为的影响[J]. 金属学报, 2023, 59(4): 567-576.
[9] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[10] 巩向鹏, 伍翠兰, 罗世芳, 沈若涵, 鄢俊. 自然时效对Al-2.95Cu-1.55Li-0.57Mg-0.18Zr合金160℃人工时效的影响[J]. 金属学报, 2023, 59(11): 1428-1438.
[11] 冯迪, 朱田, 臧千昊, 李胤樹, 范曦, 张豪. 喷射成形过共晶AlSiCuMg合金的固溶行为[J]. 金属学报, 2022, 58(9): 1129-1140.
[12] 韩冬, 张炎杰, 李小武. 短程有序对高层错能Cu-Mn合金拉-拉疲劳变形行为及损伤机制的影响[J]. 金属学报, 2022, 58(9): 1208-1220.
[13] 刘续希, 柳文波, 李博岩, 贺新福, 杨朝曦, 恽迪. 辐照条件下Fe-Cu合金中富Cu析出相的临界形核尺寸和最小能量路径的弦方法计算[J]. 金属学报, 2022, 58(7): 943-955.
[14] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[15] 朱小绘, 刘向兵, 王润中, 李远飞, 刘文庆. 290℃氩离子辐照对Fe-Cu合金微观组织的影响[J]. 金属学报, 2022, 58(7): 905-910.