Please wait a minute...
金属学报  2013, Vol. 49 Issue (6): 731-738    DOI: 10.3724/SP.J.1037.2013.00033
  论文 本期目录 | 过刊浏览 |
表观的和基于物理的35Mn2钢奥氏体热变形本构分析
魏海莲1),刘国权1,2),肖翔1),张明赫2)
1) 北京科技大学材料科学与工程学院, 北京 100083
2) 北京科技大学新金属材料国家重点实验室, 北京 100083
APPARENT AND PHYSICALLY BASED CONSTITUTIVE ANALYSES FOR HOT DEFORMATION OF AUSTENITE IN 35Mn2 STEEL
WEI Hailian1), LIU Guoquan1,2), XIAO Xiang1), ZHANG Minghe2)
1) School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
2) State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083
引用本文:

魏海莲,刘国权,肖翔,张明赫. 表观的和基于物理的35Mn2钢奥氏体热变形本构分析[J]. 金属学报, 2013, 49(6): 731-738.
WEI Hailian, LIU Guoquan, XIAO Xiang, ZHANG Minghe. APPARENT AND PHYSICALLY BASED CONSTITUTIVE ANALYSES FOR HOT DEFORMATION OF AUSTENITE IN 35Mn2 STEEL[J]. Acta Metall Sin, 2013, 49(6): 731-738.

全文: PDF(669 KB)  
摘要: 

通过热压缩实验和3种本构分析方法, 系统研究了35Mn2钢的奥氏体热变形本构关系. 首先建立了传统的利用峰值应力求得表观材料常数的双曲正弦本构方程, 求得实验钢的热变形激活能为278 kJ/mol, 与奥氏体的自扩散激活能(270 kJ/mol)十分接近, 表明其热变形速率控制机制是扩散控制的位错攀移. 其次建立了考虑应变量对表观材料常数影响的改进型双曲正弦本构方程, 利用这种改进型本构方程预测实验钢的流变应力, 预测值与实验值相关系数为0.991, 平均相对误差为4.19%, 表明预测值与实验值吻合良好,可用以准确预测实验钢的热变形流变应力. 第三种方法是基于物理的本构模型, 考虑了Young’s模量和奥氏体的自扩散系数与温度的关系,利用这种方法同样可以获得峰值应力与变形条件的关系, 但拟合精度不及双曲正弦本构方程, 本工作对其进行一定的修正后, 其拟合精度有明显提高.

关键词 35Mn2钢热变形本构关系    
Abstract

The constitutive relationships of a 35Mn2 steel during hot compression testing were systematically investigated using three methods. The first method is a conventional hyperbolic sine equation with peak stress dependent constants, the activation energy Q determined by this method is about 278 kJ/mol, very close to the austenite lattice self--diffusion activation energy (270 kJ/mol), indicating the rate-controlling mechanism is dislocation climb controlled by diffusion. The second method is a developed hyperbolic sine equation with strain dependent constants, comparing with experimental results, the correlation coefficient and average relative error ofpredicted and measured values are 0.991 and 4.19%, respectively, indicating that the developed equations can give an accurate estimate of the flow stress for the experimental steel. The third method is a physically based approach accounting for the dependence of the Young’s modulus and the self-diffusion coefficient of austenite on temperature, which is also capable of representing the flow stress of the material as a function of the deformation conditions, but the fitting precision by this method is lower than by the conventional hyperbolic sine equation, and through modification, the fitting precision of the physically based approach is improved in this work.

Key words35Mn2 steel    hot deformation    constitutive relationship
收稿日期: 2013-01-17     
基金资助:

国家自然科学基金项目51071019和国家高技术研究发展计划项目2013AA031601资助

作者简介: 魏海莲, 女, 1988年生, 博士生

[1] Wu Z F, Zhang D J, Pei R Y, Wang D C, Yan M L.  Oil Field Equipment, 2000; 29(4): 30

(吴宗福, 张栋杰, 裴润有, 王大创, 严密林. 石油矿场机械, 2000; 29(4): 30)
[2] Mirzadeh H, Cabrera J M, Prado J M, Najafizadeh A.  Mater Sci Eng, 2011; A528: 3876
[3] Meysami M, Mousavi S A A A.  Mater Sci Eng, 2011; A528: 3049
[4] Chen L, Wang L M, Du X J, Liu X.  Acta Metall Sin, 2010; 46: 52
(陈雷, 王龙妹, 杜晓健, 刘晓. 金属学报, 2010; 46: 52)
[5] Sun C Y, Luan J D, Liu G, Li R, Zhang Q D.  Acta Metall Sin, 2012; 48: 853
(孙朝阳, 孪京东, 刘赓, 李瑞, 张清东. 金属学报, 2012; 48: 853)
[6] Xiao X, Liu G Q, Hu B F, Zheng X, Wang L N, Chen S J, Ullah A.  Comp Mater Sci, 2012; 62: 227
[7] Zhao H T, Liu G Q, Xu L.  Mater Sci Eng, 2013; A559: 262
[8] Wu K, Liu G Q, Hu B F, Li F, Zhang Y W, Tao Y, Liu J T.  Mater Des, 2011; 32: 1872
[9] Wei H L, Liu G Q, Xiao X, Zhao H T, Ding H, Kang R M.  Mater Sci Eng, 2013; A564: 140
[10]Wang Z X, Liu X F, Xie J X.  Acta Metall Sin, 2008; 44: 1378
(王智祥, 刘雪峰, 谢建新. 金属学报, 2008; 44: 1378)
[11] Mirzadeh H, Najafizadeh A.  Mater Sci Eng, 2010; A527: 1160
[12] Zhang H G, He Y, Liu X F, Xie J X.  Acta Metall Sin, 2007; 43: 930
(张红钢, 何勇, 刘雪峰, 谢建新. 金属学报, 2007; 43: 930)
[13] Tan Y J, Pan Q L, He Y B, Li W B, Liu X Y, Fan X.  Acta Metall Sin, 2009; 45: 887
(覃银江, 潘清林, 何运斌, 李文斌, 刘晓艳, 范曦. 金属学报, 2009; 45: 887)
[14] Mirzadeh H, Cabrera J M, Najafizadeh A.  Acta Mater, 2011; 59: 6441
[15] El Wahabi M, Cabrera J M, Prado J M.  Mater Sci Eng, 2003; A343: 116
[16] Lou Y, Li L X, Zhou J, Na L.  Mater Charact, 2011; 62: 346
[17] Cabrera J M, Al Omar A, Jonas J J, Prado J M.  Metall Mater Trans, 1997; 28A: 2233
[18] Cabrera J M, Ponce J, Prado J M.  J Mater Process Technol, 2003; 143--144: 403
[19] Cabrera J M, Jonas J J, Prado J M.  Mater Sci Technol, 1996; 12: 579
[20] Frost H J, Ashby M F. Deformation--Mechanism Maps: the Plasticity and Creep of Metals and Ceramics. Oxford: Pergamon Press, 1982: 21
[21] Mirzadeh H, Najafizadeh A, Moazeney M.  Metall Mater Trans, 2009; 40A: 2950
[22] McQueen H J, Yue S, Ryan N D, Fry E.  J Mater Proc Technol, 1995; 53: 293
[23] Medina S F, Hernandez C A.  Acta Mater, 1996; 44: 137
[24] Galiyev A, Kaibyshev R, Gottstein G.  Acta Mater, 2001; 49: 1199
[25] Srinivasan N, Prasad Y V R K, Rama Rao P.  Mater Sci Eng, 2008; A476: 146
[26] Seshacharyulu T, Medeiros S C, Frazier W G, Prasad Y V R K.  Mater Sci Eng, 2002; A325: 112
[1] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[2] 孙毅, 郑沁园, 胡宝佳, 王平, 郑成武, 李殿中. 3Mn-0.2C中锰钢形变诱导铁素体动态相变机理[J]. 金属学报, 2022, 58(5): 649-659.
[3] 颜孟奇, 陈立全, 杨平, 黄利军, 佟健博, 李焕峰, 郭鹏达. 热变形参数对TC18钛合金β相组织及织构演变规律的影响[J]. 金属学报, 2021, 57(7): 880-890.
[4] 倪珂, 杨银辉, 曹建春, 王刘行, 刘泽辉, 钱昊. 18.7Cr-1.0Ni-5.8Mn-0.2NNi型双相不锈钢的大变形热压缩软化行为[J]. 金属学报, 2021, 57(2): 224-236.
[5] 刘庆琦, 卢晔, 张翼飞, 范笑锋, 李瑞, 刘兴硕, 佟雪, 于鹏飞, 李工. Al19.3Co15Cr15Ni50.7高熵合金的热变形行为[J]. 金属学报, 2021, 57(10): 1299-1308.
[6] 刘超, 姚志浩, 江河, 董建新. GH4720Li合金毫米级粗大晶粒热变形获得均匀等轴晶粒的可行性及工艺控制[J]. 金属学报, 2021, 57(10): 1309-1319.
[7] 周丽, 李明, 王全兆, 崔超, 肖伯律, 马宗义. 31%B4Cp/6061Al复合材料的热变形及加工图的研究[J]. 金属学报, 2020, 56(8): 1155-1164.
[8] 赵嫚嫚, 秦森, 冯捷, 代永娟, 国栋. AlNi1Cr9Al(1~3)Ni(1~7)WVNbB钢热变形行为的影响[J]. 金属学报, 2020, 56(7): 960-968.
[9] 陈文雄, 胡宝佳, 贾春妮, 郑成武, 李殿中. 热变形后Ni-30%Fe模型合金中奥氏体的亚动态软化行为[J]. 金属学报, 2020, 56(6): 874-884.
[10] 张勇, 李鑫旭, 韦康, 万志鹏, 贾崇林, 王涛, 李钊, 孙宇, 梁红艳. 850 ℃涡轮盘用新型变形高温合金GH4975挤压棒材热变形规律研究[J]. 金属学报, 2020, 56(10): 1401-1410.
[11] 马凯, 张星星, 王东, 王全兆, 刘振宇, 肖伯律, 马宗义. SiC/2009Al复合材料的变形加工参数的优化仿真研究[J]. 金属学报, 2019, 55(10): 1329-1337.
[12] 钟茜婷, 王磊, 刘峰. Incoloy 028合金不连续动态再结晶中链状组织形成机理研究[J]. 金属学报, 2018, 54(7): 969-980.
[13] 苏煜森, 杨银辉, 曹建春, 白于良. 节Ni型2101双相不锈钢的高温热加工行为研究[J]. 金属学报, 2018, 54(4): 485-493.
[14] 张明, 刘国权, 胡本芙. 镍基粉末高温合金热加工变形过程中显微组织不稳定性对热塑性的影响[J]. 金属学报, 2017, 53(11): 1469-1477.
[15] 王存宇,常颖,杨洁,赵坤民,董瀚. 热变形和淬火配分处理的复合作用对低碳合金钢马氏体相变机制的影响*[J]. 金属学报, 2015, 51(8): 913-919.