Please wait a minute...
金属学报  2013, Vol. 49 Issue (11): 1339-1346    DOI: 10.3724/SP.J.1037.2013.00470
  论文 本期目录 | 过刊浏览 |
βTiAl合金高温变形的不连续屈服行为
徐文臣,单德彬,张浩
哈尔滨工业大学材料科学与工程学院, 哈尔滨 150001
DISCONTINUOUS YIELDING BEHAVIOR OF β PHASE CONTAINING TiAl ALLOY DURING HIGHTEMPERATURE DEFORMATION PROCESS
XU Wenchen, SHAN Debin, ZHANG Hao
School of Materials Science and Engineering, Harbin Institute of Technogloy, Harbin 150001
引用本文:

徐文臣,单德彬,张浩. 含βTiAl合金高温变形的不连续屈服行为[J]. 金属学报, 2013, 49(11): 1339-1346.
XU Wenchen, SHAN Debin, ZHANG Hao. DISCONTINUOUS YIELDING BEHAVIOR OF β PHASE CONTAINING TiAl ALLOY DURING HIGHTEMPERATURE DEFORMATION PROCESS[J]. Acta Metall Sin, 2013, 49(11): 1339-1346.

全文: PDF(3030 KB)  
摘要: 

在热模拟试验机上进行高温压缩实验, 研究了含β相的Ti—42Al—9V—0.3Y合金的高温变形行为,分析了其不连续屈服行为的产生机理. 研究表明,含β相的Ti—42Al—9V—0.3Y合金的主要热变形软化机制为β相的动态回复和γ相的动态再结晶,高温变形过程的不连续屈服行为与β相的动态回复和γ相中超位错(Burgers矢量b=1/2〈112〉)的增殖相关.基于Orowan方程建立的位错动力学模型可合理解释该合金不连续屈服的产生原因,证实可动位错密度的快速增加和低的位错速度应力敏感系数m*容易诱发TiAl合金的不连续屈服.合金在较低温度(1100—1150℃)和较高应变速率(1 s-1)下产生波动屈服归因于位错滑移和孪晶交互作用.

关键词 TiAl合金不连续屈服动态软化超位错Orowan方程    
Abstract

γ-TiAl base alloys are promising high-temperature materials for aviation and aerospace applications due to their low density, exceptional high-temperature strength and good oxidation resistance. However, low ductility and poor hot workability limit the use of such alloys. The introduction of β phase appears to be effective to improve the hot workability of TiAl alloys, while the influence of β phase on hot deformation behavior of TiAl alloy has been rarely investigated until now. In this work, high-temperature compression experiments of β phase containing TiAl alloy (Ti-42Al-9V-0.3Y) were conducted on a Gleeble-1500 thermal simulation machine at 1000—1200℃ and strain rates of 0.001—1.0 s-1. The hot deformation behavior of the TiAl alloy was investigated and the discontinuous yielding mechanism was analyzed. The results show that the main deformation softening mechanism was the dynamic recovery (DRV) of β phase and dynamic recrystallization (DRX) of γ phase. The discontinuous yielding behavior was closely related to the DRV in β phase and the multiplication of the superdislocation with Burgers vector $\bm b=1/2〈112〉 in γ phase. The established dislocation dynamics model based on the Orowan equationin the present work could reasonably explain the causes for the discontinuous yielding phenomenon, indicating that the rapid increase of mobile dislocation density and small dislocation motion velocity sensitivity m* could induce the discontinuous yielding of the TiAl alloy. In addition, the fluctuating yielding behavior was attributed to the interaction effect of dislocation slip and twin at lower temperatures of 1100—-1150℃ and higher strain rate of 1 s-1.

Key wordsTiAl alloy    discontinuous yielding    dynamic softening    superdislocation    Orowan equation
收稿日期: 2013-08-02     
基金资助:

哈尔滨市青年科学基金资助项目2008RFQXG040

作者简介: 徐文臣, 男, 1976年生, 副教授

[1] Hu D.  Intermetallics, 2001; 9: 1037

[2] Das G, Kestler H, Clemens H, Bartolotta P A.  J Met, 2004; 56(11): 42
[3] Xu X J, Lin J P, Wang Y L, Gao J F, Lin Z, Chen G L.J Alloys Compd, 2006; 414: 175
[4] Vanderschueren D, Nobuki M, Nakamura M.  Scr Metall Mater, 1993; 28: 605
[5] Tetsui T, Kobayashi T, Harada H.  Mater Sci Eng, 2012; A552: 345
[6] Clemens H, Chladil H F, Wallgram W, Zickler G A, Gerling R, Liss K D,Kremmer S, Guther V, Smarsly W.  Intermetallics, 2008; 16: 827
[7] Niu H Z, Chen Y Y, Xiao S L, Xu L J.  Intermetallics, 2012; 31: 225
[8] Brenner S S.  J Appl Phys, 1957; 28: 1023
[9] Hahn G T.  Acta Metall, 1962; 10: 727
[10] Varin R A, Mazurek B, Himbeault D.  Mater Sci Eng, 1987; 10: 109
[11] Kurzydlowski K J.  Scr Metall Mater, 1992; 1: 283
[12] Li L X, Lou Y, Yang L B, Peng D S, Rao K P.  Mater Des, 2002; 23: 451
[13] Jia W J, Zeng W D, Zhou Y G, Liu J R, Wang Q J.  Mater Sci Eng, 2011; A528: 406
[14] Jonas J J, Heritier B, Luton M J.  Metall Trans, 1979; 10A: 611
[15] Vijayshankar M N, Ankem S. In: Froes F H, Caplan I eds.,Proc Titanium'92: Science and Technology, Warrendale: TMS, 1993: 1733
[16] Ankem S, Shyue J G, Vijayshankar M N, Arsenault R J.  Mater Sci Eng, 1989; A111: 51
[17] Besag F M C, Smallman R E.  Acta Metall, 1970; 18: 429
[18] Lai Y J, Zeng W D, Zhang C, Zhou J H, Wang X Y, Yu H Q, Zhou Y G.Mech Sci Technol Aerosp Eng, 2007; 26: 1183
(赖运金, 曾卫东, 张弛, 周建华, 王晓英, 俞汉清, 周义刚. 机械科学与技术, 2007; 26: 1183)
[19] Philippart I, Rack H J.  Mater Sci Eng, 1998; A254: 253
[20] Yamaguchi M, Umakoshi Y.  Prog Mater Sci, 1990; 34(1): 1
[21] Apple F, Wagner R.  Mater Sci Eng, 1998; R22: 187
[22] Haasen P.  Dislocation Dynamics. New York: McGraw—Hill Book Company, 1968: 701
[23] Yonenaga I, Sumino K.  J Appl Phys, 1989; 65: 85
[24] Yang D Z.  Dislocation and Strengthening Mechanism of Metals. Harbin: Harbin Institute of Technology Press, 1990: 131
(杨德庄. 位错与金属强化机制. 哈尔滨: 哈尔滨工业大学出版社, 1990: 131)
[25] Zhao J S.  Fundamentals of Dislocation Theory. Beijing: National Defense Industry Press, 1989: 125
(赵敬世. 位错理论基础. 北京: 国防工业出版社, 1989: 125)
[26] Wang Z J, Qiang H F, Wang X R.  Chin J Nonferrous Met, 2012; 22: 1904
(王哲君, 强洪夫, 王学仁. 中国有色金属学报, 2012; 22: 1904)
[1] 李小兵, 潜坤, 舒磊, 张孟殊, 张金虎, 陈波, 刘奎. W含量对Ti-42Al-5Mn-xW合金相转变行为的影响[J]. 金属学报, 2023, 59(10): 1401-1410.
[2] 刘仁慈, 王鹏, 曹如心, 倪明杰, 刘冬, 崔玉友, 杨锐. 700℃热暴露对 β 凝固 γ-TiAl合金表面组织及形貌的影响[J]. 金属学报, 2022, 58(8): 1003-1012.
[3] 陈玉勇, 叶园, 孙剑飞. TiAl合金板材轧制研究现状[J]. 金属学报, 2022, 58(8): 965-978.
[4] 李天瑞, 刘国怀, 于少霞, 王文娟, 张风奕, 彭全义, 王昭东. 直接包套轧制铸态Ti-46Al-8Nb合金的组织特征及热变形机制[J]. 金属学报, 2020, 56(8): 1091-1102.
[5] 刘先锋, 刘冬, 刘仁慈, 崔玉友, 杨锐. Ti-43.5Al-4Nb-1Mo-0.1B合金的包套热挤压组织与拉伸性能[J]. 金属学报, 2020, 56(7): 979-987.
[6] 王希,刘仁慈,曹如心,贾清,崔玉友,杨锐. 冷却速率对β凝固γ-TiAl合金硼化物和室温拉伸性能的影响[J]. 金属学报, 2020, 56(2): 203-211.
[7] 陈占兴,丁宏升,陈瑞润,郭景杰,傅恒志. 脉冲电流作用下TiAl合金凝固组织演变及形成机理[J]. 金属学报, 2019, 55(5): 611-618.
[8] 廖依敏, 丰敏, 陈明辉, 耿哲, 刘阳, 王福会, 朱圣龙. TiAl合金表面搪瓷基复合涂层与多弧离子镀NiCrAlY涂层的抗热腐蚀行为对比研究[J]. 金属学报, 2019, 55(2): 229-237.
[9] 万志鹏, 王涛, 孙宇, 胡连喜, 李钊, 李佩桓, 张勇. GH4720Li合金热变形过程动态软化机制[J]. 金属学报, 2019, 55(2): 213-222.
[10] 金浩, 贾清, 刘荣华, 线全刚, 崔玉友, 徐东生, 杨锐. 籽晶制备及Ti-47Al合金PST晶体取向控制[J]. 金属学报, 2019, 55(12): 1519-1526.
[11] 潘宇, 路新, 刘程程, 孙健卓, 佟健博, 徐伟, 曲选辉. Sn对TiAl基合金烧结致密化与力学性能的影响[J]. 金属学报, 2018, 54(1): 93-99.
[12] 李天瑞, 刘国怀, 徐莽, 牛红志, 付天亮, 王昭东, 王国栋. Ti-43Al-4Nb-1.5Mo合金包套锻造与热处理过程的微观组织及高温拉伸性能[J]. 金属学报, 2017, 53(9): 1055-1064.
[13] 陈占兴,丁宏升,刘石球,陈瑞润,郭景杰,傅恒志. 直流电流对Ti-48Al-2Cr-2Nb合金组织和性能的影响[J]. 金属学报, 2017, 53(5): 583-591.
[14] 王刚,徐磊,崔玉友,杨锐. TiAl预合金粉末热等静压致密化机理及热处理对微观组织的影响*[J]. 金属学报, 2016, 52(9): 1079-1088.
[15] 杨亮,高叔博,王艳丽,叶腾,宋霖,林均品. Si对高Nb-TiAl合金组织及室温拉伸性能的影响*[J]. 金属学报, 2015, 51(7): 859-865.