Please wait a minute...
金属学报  2013, Vol. 49 Issue (10): 1275-1280    DOI: 10.3724/SP.J.1037.2013.00241
  论文 本期目录 | 过刊浏览 |
变形温度对冷喷涂304不锈钢涂层材料高温变形行为的影响
朱传琳1),张俊宝2),程从前1),赵杰1)
1) 大连理工大学材料科学与工程学院, 大连 116085
2) 宝山钢铁股份有限公司研究院, 上海 201900
INFLUENCE OF DEFORMATION TEMPERATURE ON HOT DEFORMATION BEHAVIOR OF COLD SPRAYED 304 STAINLESS STEEL COATING MATERIAL
ZHU Chuanlin1), ZHANG Junbao2), CHENG Congqian1), ZHAO Jie1)
1) School of Materials Science and Engineering, Dalian University of Technology, Dalian 116085
2) Baosteel Research Institute, Baoshan Iron & Steel Co., Ltd., Shanghai 201900
引用本文:

朱传琳,张俊宝,程从前,赵杰. 变形温度对冷喷涂304不锈钢涂层材料高温变形行为的影响[J]. 金属学报, 2013, 49(10): 1275-1280.
ZHU Chuanlin, ZHANG Junbao, CHENG Congqian, ZHAO Jie. INFLUENCE OF DEFORMATION TEMPERATURE ON HOT DEFORMATION BEHAVIOR OF COLD SPRAYED 304 STAINLESS STEEL COATING MATERIAL[J]. Acta Metall Sin, 2013, 49(10): 1275-1280.

全文: PDF(2134 KB)  
摘要: 

采用冷喷涂技术制备了致密的304不锈钢涂层材料.利用热模拟试验机对冷喷涂304不锈钢涂层材料在1000-1150℃压缩变形,研究变形温度对其变形抗力、组织和硬度的影响. 结果表明, 随着变形温度由1000℃上升到1150℃,冷喷涂304不锈钢涂层材料稳态变形抗力由315.4 MPa降低到187.9 MPa,硬度由332.8 HV0.2降低到244.8 HV0.2,易变形区面积增大, 自由变形区发生再结晶, 裂纹减少. 在上述变形条件下,热变形激活能Q为464 kJ/mol. 冷喷涂304不锈钢涂层在1237-1265℃发生相变.

关键词 冷喷涂304不锈钢变形温度高温变形    
Abstract

The dense 304 stainless steel coating material was fabricated by cold spraying technology.The influence of deformation temperature on hot deformation behavior of cold sprayed 304 stainless steel coating material was investigated by thermo-mechanical simulator.The results showed that deformation resistance of cold sprayed 304 stainless steel coating material reduced with the increment of deformation temperature. The steady-state deformation resistance reduced from 315.4 MPa to 187.9 MPa when deformation temperature increased from 1000℃ to 1150℃ with deformation rate 20 s-1 and deformation reduction 17.5%. The microsturcture of deformation sample might be divided into easy, difficult and free deformation zones. The area of easy deformation zone increased and area of difficult deformation zone decreased when deformation temperature increased from 1000℃ to 1150℃. Recrystallization occurred at free deformation zone without cracking at 1150℃. DSC curve showed that phase transition of cold sprayed 304 stainless steel coating material occurred at 1237-1265℃. The microhardness of cold sprayed 304 stainless steel coating material was 313.3 HV0.2, which was relatively high. The microhardness of deformation samples reduced from 332.8 HV0.2 to 244.8 HV0.2 as the deformation temperature increased from 1000℃ to 1150℃ with deformation rate 20 s-1 and deformation reduction 50%. The hot temperature deformation equation of cold sprayed 304 stainless steel coating material was obtained with deformation temperature 1000-1150℃ and deformation rate 5-20 s-1. The value of hot temperature deformation activation energy was 464 kJ/mol under the deformation conditions.

Key wordscold spraying    304 stainless steel    deformation temperature    hot deformation
收稿日期: 2013-05-02     
基金资助:

国家重点基础研究发展计划项目2012CB932203, 国家自然科学基金项目51171037和51134013资助

作者简介: 朱传琳, 女, 1988年生, 硕士生

[1] Stoltenhoff T, Kreye H, Richter H J.  J Therm Spray Technol, 2002; 11: 542

[2] Dykhuizen R C, Smith M F.  J Therm Spray Technol, 1998; 7: 205
[3] Bu H Y, Lu C.  J Mater Eng, 2010; (1): 94
(卜恒勇, 卢晨. 材料工程, 2010; (1): 94)
[4] Li G, Zhou Y, Xue S, Wang H D.  Heat Treat Technol Equip, 2009; 30: 11
(李耿, 周勇, 薛飒, 王洪铎. 热处理技术与装备, 2009; 30: 11)
[5] Li W Y, Li C J.  Chin Surf Eng, 2002; (1): 12
(李文亚, 李长久. 中国表面工程, 2002; (1): 12)
[6] Gartner F, Stoltenhoff T, Schmidt T, Kreye T.  J Therm Spray Technol, 2006; 15: 223
[7] Meng X M, Zhang J B, Han W, Zhao J.  Appl Surf Sci, 2011; 258: 700
[8] Zhang H B, Zhang J B, Liang Y L, Song H W.  Baosteel Technol, 2009; (1): 46
[9] Stoltenhoff T, Borchers C, Grtner F, Kreye T.  Surf Coat Technol, 2006; 200: 4947
[10] Jing Y A, Wang C Y.  J Anshan Univ Sci Technol, 2007; 30: 590
(井玉安, 王晨宇. 鞍山科技大学学报, 2007; 30: 590)
[11] Ding H M, Fan X L, Wang J F.  Trans Mater Heat Treat, 2011; 32: 18
[12] Ni H W, Gao J, Tang L M.  Spec Steel, 2002; 23(3): 4
(倪红卫, 高娟, 唐利民. 特殊钢, 2002; 23(3): 4)
[13] Ramazan K, Mustafa A.  J Mater Process Technol, 2004; 152: 91
[14] Zhang S H, Sun Y, Zhang D M, Shi Q N.  J Mater Process Technol, 1997; 63: 370
[15] Song R B, Kang Y L, Zhao A M.  J Mater Process Technol, 2008; 198(1-3): 291
[16] Tsay L W, Lin Y J, Chen C.  Corros Sci, 2012; 63: 267
[17] Meng X M, Zhang J B, Zhao J, Liang Y L, Zhang Y J.  J Mater Sci Technol, 2011; 27: 809
[18] Spencer K, Zhang M X.  Surf Coat Technol, 2011; 205: 5135
[19] Xiong J Q, Xie G, Tang G B. Yunnan Metall, 2008; 32(5): 37
(熊家强, 谢刚, 唐广波. 云南冶金, 2008; 32(5): 37)
[20] Dehghan M A, Barnett M R, Hodgsonb P D.  Mater Sci Eng, 2008; A485: 664
[21] Taylor A S, Hodgson P D.  Mater Sci Eng, 2011; A529: 164
[22] Momeni A, Dehghani K, Keshmiri H, Ebrahimic G R.  Mater Sci Eng, 2010; A527: 1605
[23] Borchers C, Schmidt T, Gartner F, Kreye T.  Mater Sci Proc Appl Phys, 2008; 90A: 517
[24] Lv L H.  Principles of Metal Plastic Deformation and Rolling. Beijing: Chemical Industry Press, 2006: 39
(吕立华. 金属塑性变形与轧制原理. 北京: 化学工业出版社, 2006: 39)
[25] Zhao K W.  Master Thesis, Lanzhou University of Technology, 2010

(赵科巍. 兰州理工大学硕士学位论文, 2010)

[1] 冯力, 王贵平, 马凯, 杨伟杰, 安国升, 李文生. 冷喷涂辅助感应重熔合成AlCo x CrFeNiCu高熵合金涂层的显微组织和性能[J]. 金属学报, 2023, 59(5): 703-712.
[2] 熊天英, 王吉强. 中国科学院金属研究所冷喷涂技术研究进展[J]. 金属学报, 2023, 59(4): 537-546.
[3] 李文亚, 张正茂, 徐雅欣, 宋志国, 殷硕. 冷喷涂Ni及镍基复合涂层研究进展[J]. 金属学报, 2022, 58(1): 1-16.
[4] 刘海霞, 陈金豪, 陈杰, 刘光磊. NaCl溶液腐蚀后304不锈钢的射流空蚀特征[J]. 金属学报, 2020, 56(10): 1377-1385.
[5] 刘杨,王磊,宋秀,梁涛沙. DD407/IN718高温合金异质焊接接头的组织及高温变形行为[J]. 金属学报, 2019, 55(9): 1221-1230.
[6] 张清东,李硕,张勃洋,谢璐,李瑞. 金属轧制复合过程微观变形行为的分子动力学建模及研究[J]. 金属学报, 2019, 55(7): 919-927.
[7] 白杨, 王振华, 李相波, 李焰. 低压冷喷涂制备Al(Y)-30%Al2O3涂层及其海水腐蚀行为[J]. 金属学报, 2019, 55(10): 1338-1348.
[8] 徐士新, 余伟, 李舒笳, 王坤, 孙齐松. 预变形温度对纳米贝氏体相变动力学及组织的影响[J]. 金属学报, 2018, 54(8): 1113-1121.
[9] 赵燕春, 孙浩, 李春玲, 蒋建龙, 毛瑞鹏, 寇生中, 李春燕. 高强韧Ti-Ni基块体金属玻璃复合材料高温变形行为[J]. 金属学报, 2018, 54(12): 1818-1824.
[10] 马广财, 付华萌, 王峥, 徐庆亮, 张海峰. 304不锈钢毛细管/Zr53.5Cu26.5Ni5Al12Ag3块体非晶合金复合材料的制备与性能研究[J]. 金属学报, 2014, 50(9): 1087-1094.
[11] 梁后权, 郭鸿镇, 宁永权, 姚泽坤, 赵张龙. 基于软化机制的TC18钛合金本构关系研究*[J]. 金属学报, 2014, 50(7): 871-878.
[12] 孔凡涛,崔宁,陈玉勇,熊宁宁. Ti-43Al-9V-Y合金的高温变形行为研究[J]. 金属学报, 2013, 49(11): 1363-1368.
[13] 方晓英 刘志勇 Tikhonova M Belyakov A Kaibyshev R Rohrer G S 王卫国. 多向锻造和单向轧制304不锈钢高温退火后的晶界特征分布[J]. 金属学报, 2012, 48(8): 895-906.
[14] 杜楠 田文明 赵晴 陈四兵. 304不锈钢在3.5\%NaCl溶液中的点蚀动力学及机理[J]. 金属学报, 2012, 48(7): 807-814.
[15] 秦小梅 陈礼清 邸洪双 邓伟. 变形温度对Fe-23Mn-2Al-0.2C TWIP钢变形机制的影响[J]. 金属学报, 2011, 47(9): 1117-1122.