Please wait a minute...
金属学报  2010, Vol. 46 Issue (9): 1103-1108    DOI: 10.3724/SP.J.1037.2010.00055
  论文 本期目录 | 过刊浏览 |
多孔结构MgO表面化学镀Ni层的制备与表征
李均明1), 薛晓楠1), 蔡辉2), 蒋百灵1)
1) 西安理工大学材料科学与工程学院, 西安 710048
2) 西安交通大学理学院物质非平衡合成与调控教育部重点实验室, 西安 710049
PREPARATION AND CHARACTERIZATION OF ELECTROLESS Ni COATING ON THE SURFACE OF MgO WITH POROUS STRUCTURE
LI Junming1), XUE Xiaonan1), CAI Hui2), JIANG Bailing1)
1) School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048
2) MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi'an Jiaotong University, Xi'an 710049
引用本文:

李均明 薛晓楠 蔡辉 蒋百灵. 多孔结构MgO表面化学镀Ni层的制备与表征[J]. 金属学报, 2010, 46(9): 1103-1108.
, , , . PREPARATION AND CHARACTERIZATION OF ELECTROLESS Ni COATING ON THE SURFACE OF MgO WITH POROUS STRUCTURE[J]. Acta Metall Sin, 2010, 46(9): 1103-1108.

全文: PDF(895 KB)  
摘要: 

利用多孔结构的表面活性, 采用以硫酸镍(NiSO4?7H2O)为主盐, 次亚磷酸钠(NaH2PO2?H2O)为还原剂且无其它特殊组分的常用化学镀Ni溶液, 经无敏化活化预处理直接在微弧氧化形成的多孔MgO薄膜表面制备出化学镀Ni层, 并对Ni层的相组成、显微结构、导电性和耐蚀性进行了表征. 结果表明: 平均厚度约5 μm的化学镀Ni层颗粒均匀, 组织致密; Ni层进入MgO薄膜的孔洞, 形成交错咬合状态. XRD分析表明, Ni层由晶态Ni与非晶态Ni--P组成. 四探针和极化曲线测试结果说明 Ni层的导电性良好, 同时由于Ni层的存在, 试样的腐蚀电位显著提高. 化学镀Ni过程中, 溶液中的Ni2+在还原剂离子的作用下首先在多孔MgO薄膜的微孔处还原沉积生成微小的初生Ni颗粒, 初生Ni颗粒进而长大并扩展, 最终形成完整的化学镀Ni层. 多孔结构以其特有的活化作用实现了氧化物表面无敏化活化预处理的化学镀.

关键词 化学镀NiMgO多孔结构导电性腐蚀电位    
Abstract

Generally, the surface pretreatments such as sensitization and activation are necessary for depositing a nickel metal layer on oxide surface by electroless plating, however, for an oxide surface with porous structure it is possible that the pretreatment is not necessary. In this paper, only by use of the surface activity of porous structure, an electroless plated nickel layer can be prepared on the surface of microarc-oxidation-fabricated porous magnesium oxide film in a conventional electroless nickel plating solution, consisted of nickel sulfate as main salt and sodium hypophosphite as reducing agent. Furthermore, the phase, microstructure, electrical conductivity and corrosion resistance of the obtained nickel layer were characterized. The results indicate that the 5 μm-thick nickel layer is composed of fine and homogeneously distributed nickel particles, at the same time the microstructure of nickel layer is dense. Nickel layer spreads into the micropores on the surface of porous magnesium oxide film, so that an interleaving interface is formed at nickel/oxide interface. XRD results reveal that the nickel layer contains crystalline Ni and amorphous Ni-P. Four-point probe measurement indicates that the nickel layer exhibits well electrical conductivity. Meanwhile, polarization curve reveals that corrosion potential elevates notably due to the presence of nickel layer. During electroless nickel plating the nickel ions in solution were reduced and deposited in the micropores of porous magnesium oxide film under the action of reducing agent ions, so as to generate tiny primary nickel particles, subsequently, these primary nickel particles continuously grew and spread, and finally formed an entire nickel layer on oxide surface.

Key wordselectroless nickel plating    MgO    porous structure    electrical conductivity    corrosion potential
收稿日期: 2010-01-28     
基金资助:

国家重大国际合作研究项目2007DFB50150和陕西省重点学科专项资金建设项目资助

作者简介: 李均明, 男, 1972年生, 副教授
[1] Kang M, Kim J M, Kim J W, Kim Y K, Chung H, Yie J E. Surf Coat Technol, 2002; 161: 79 [2] Wu Z J, Ge S H, Zhang M H, Li W, Tao K Y. J Colloid Interf Sci, 2009; 330: 359 [3 Liu W L, Hsieh S H, Tsai T K, Chen W J, Wu S S. Thin Solid Films, 2006; 510: 102 [4] Tang X J, Bi C L, Han C X, Zhang B G. Mater Lett, 2009; 63: 840 [5] Zhou F L, Li X M, Gao X D. Chin J Inorg Chem, 2009; 25(9): 1584 (周凤玲, 李效民, 高相东. 无机化学学报, 2009; 25(9): 1584) [6] Grande F D, Thursfield A, Metcalfe I S. Solid State Ionics, 2008; 179: 2042 [7] Huo H W, Li Y, Wang F H. Corros Sci, 2004; 46: 1467 [8] Zhang Z C. Aqueous Solution Deposition Technology. Beijing: Chemical Industry Press, 2005: 142 (张忠诚. 水溶液沉积技术. 北京: 化学工业出版社, 2005: 142) [9] Sun S, Liu J G, Yan C W, Wang F H. Appl Surf Sci, 2008; 254: 5016 [10] Liu P S. Introduction to Cellular Materials. Beijing: Tsinghua University Press, 2004: 214 (刘培生. 多孔陶瓷引论. 北京: 清华大学出版社, 2004: 214) [11] Gesser H D, Goswami P C. Chem Rev, 1989; 89: 765 [12] Hench L L, West J K. Chem Rev, 1990; 90: 33 [13] ?ivcová Z, ?erny M, Pabst W, Gregorová E. J Eur Ceram Soc, 2009; 29: 2765 [14] Liu J, Miao X. J Mater Sci, 2005; 40: 6145 [15] Wang H T, Liu X Q, Meng G Y. Mater Res Bull, 1997; 32: 1705 [16] Tillous K, Toll-Duchanoy T, Bauer-Grosse E, Hericher L, Geandier G. Surf Coat Technol, 2009; 203: 2969 [17] Yerokhin A L, Nie X, Leyland A, Matthews A, Dowey S J. Surf Coat Technol, 1999; 122: 73 [18] Curran J A, Clyne T W. Acta Mater, 2006; 54: 1985 [19] Chen F, Zhou H, Yao B, Qin Z, Zhang Q F. Surf Coat Technol, 2007; 201: 4905 [20] Arrabal R, Matykina E, Hashimota T, Skeldon P, Thompson G E. Surf Coat Technol, 2009; 203: 2207 [21] Li Z S, Yang M A, Qian H C, Gao X H. Modern Surface Engineering Technology. Beijing: China Machine Press, 2007: 61 (郦振声,杨明安,钱翰城,高心海. 现代表面工程技术. 北京: 机械工业出版社, 2007: 61) [22] Cushing B L, Kolesnichenko V L, O′Connor C J. Chem Rev, 2004; 104: 3893 [23] Ambat R, Zhou W. Surf Coat Technol, 2004; 179: 124 [24] Gu C D, Lian J S, Li G Y, Niu L Y, Jiang Z H. J Chin Soc Corros Prot, 2005; 25(4): 271 (谷长栋, 连建设, 李光玉, 牛丽媛, 江中浩. 中国腐蚀与防护学报, 2005; 25(4): 271) [25] Liu Z M, Gao W. Surf Coat Technol, 2006; 200: 5087 [26] Li J Z, Shao Z C, Zhang X, Tian Y W. Surf Coat Technol, 2006; 200: 3010 [27] Yang L H, Li J Q, Zheng Y Z, Jiang W W, Zhang M L. J Alloy Compd, 2009; 467: 562 [28] Liu Z M, Gao W. Surf Coat Technol, 2006; 200: 3553 [29] Liu Z M, Gao W. Appl Surf Sci, 2006; 253: 2988 [30] Zhang H, Wang S L, Yao G C, Hua Z S. J Alloy Compd, 2009; 474: 306 [31] Crobu M, Scorciapino A, Elsener B, Rossi A. Electrochim Acta, 2008; 53: 3364 [32] Ma R Z, Jiang M H, Xu Z X. Introduction to Functional Materials Science. Beijing: Metallurgical Industry Press, 2006:21 (马如璋, 蒋民华, 徐祖雄. 功能材料学概论. 北京: 冶金工业出版社, 2006: 21)
[1] 王寒玉, 李彩, 赵璨, 曾涛, 王祖敏, 黄远. 基于纳米活性结构的不互溶W-Cu体系直接合金化及其热力学机制[J]. 金属学报, 2023, 59(5): 679-692.
[2] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[3] 宋庆忠, 潜坤, 舒磊, 陈波, 马颖澈, 刘奎. 镍基高温合金K417G与氧化物耐火材料的界面反应[J]. 金属学报, 2022, 58(7): 868-882.
[4] 陈闽东, 张帆, 刘智勇, 杨朝晖, 丁国清, 李晓刚. 金属材料在三亚海水中的腐蚀电位序及合金成分对耐蚀性的影响[J]. 金属学报, 2018, 54(9): 1311-1321.
[5] 董彩虹, 刘永利, 祁阳. 厚度对Bi薄膜表面特性和电学性质的影响[J]. 金属学报, 2018, 54(6): 935-942.
[6] 郑浩然, 陈民芳, 李祯, 由臣, 刘德宝. MgO改性HA对Mg-Zn-Zr/m-HA复合材料组织及性能的影响[J]. 金属学报, 2017, 53(10): 1364-1376.
[7] 黄祖江, 周敏, 杨阳, 陈泉志, 唐仕光, 李伟洲. 阳极氧化铝膜中间层阻挡元素扩散研究*[J]. 金属学报, 2016, 52(3): 341-348.
[8] 黄明亮,周少明,陈雷达,张志杰. Ni-P消耗对焊点电迁移失效机理的影响[J]. 金属学报, 2013, 49(1): 81-86.
[9] 姜子涛 杜艳霞 董亮 路民旭. 交流电对Q235钢腐蚀电位的影响规律研究[J]. 金属学报, 2011, 47(8): 997-1002.
[10] 杨巍 汪爱英 柯培玲 蒋百灵. 镁基表面微弧氧化/类金刚石膜的性能表征[J]. 金属学报, 2011, 47(12): 1535-1540.
[11] 王东 刘春明 王常珍. 高温质子导体Ba3Ca1.18Nb1.82O9-δ的制备和表征[J]. 金属学报, 2009, 45(3): 345-350.
[12] 王雪; 李言祥; 刘源 . 放射状规则多孔金属的孔分布结构[J]. 金属学报, 2007, 42(1): 6-10 .
[13] 李钒; 张登君; 李报厚; 罗世民 . 六方BN微颗粒表面化学镀Ni及动力学模型[J]. 金属学报, 2004, 40(2): 173-178 .
[14] 刘红荣; 蔡灿英; 杨奇斌 . Cu/MgO界面位错的高分辩率电子显微镜研究[J]. 金属学报, 2003, 39(3): 234-236 .
[15] 汪渊; 徐可为 . 反应磁控溅射MgO薄膜溅射模式的分形维表征[J]. 金属学报, 2003, 39(10): 1051-1054 .