Please wait a minute...
金属学报  1995, Vol. 31 Issue (3): 105-114    
  论文 本期目录 | 过刊浏览 |
疲劳裂纹尖端的位错结构
郑冶沙;王中光;艾素华
中国科学院金属研究所材料疲劳与断裂国家重点开放实验室
DISLOCATION STRUCTURE OF FATIGUE CRACK TIP
ZHENG Yesha; WANG Zhongguang; AI Suhua (State Key Laboratory of Fatigue and Fracture for Materials; Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110015)
引用本文:

郑冶沙;王中光;艾素华. 疲劳裂纹尖端的位错结构[J]. 金属学报, 1995, 31(3): 105-114.
, , . DISLOCATION STRUCTURE OF FATIGUE CRACK TIP[J]. Acta Metall Sin, 1995, 31(3): 105-114.

全文: PDF(763 KB)  
摘要: 在双相钢物理短裂纹门槛区,观察到稳定的位错胞和墙结构;长裂纹门槛区,在铁素体/马氏体相界堆垛位错密度大,有形成位错胞的趋势.长裂纹扩展第二阶段,铁素体晶粒内具有单向滑移线(R=0,-1)和正交网状(R=-1)的位错结构,长裂纹扩展第三阶段,位错稀少,但单滑移、双交滑移位错线明显拉长,说明裂纹尖端位错组态是应变历史的产物.疲劳裂纹扩展门槛区形成的位错胞和墙是一亚稳态结构,与门槛循环应力应变处于动态平衡,也是一微观结构参数.
关键词 疲劳门槛裂纹尖端位错结构双相钢物理短裂纹    
Abstract:It was observed first in this test that the stabilized dislocation cell and wall structures had been formed on near fatigue threshold of physcial short crack in dual-phase steels. There was a probability of forming dislocation cell on ferrite-martensite interfaces in long crack growth threshold. where the dislocation lines were more dense, there were the dislocation lines of single(R = 0,-1) and cross slip(R=-1) in the second stage of long crack growth ;there were obviously rare and lengthened dislocation lines of single and cross slip in the third stage of long crack growth. It is indicated that the dislocation morphologies of fatigue crack tip were the products of strain history. The dislocation cell and wall structures were substable on near physical short crack threshold. it was constituted into dynamic balance with cyclic stress-strain on threshold, and also was one of microstructural parameters.
Key words fatigue threshold    crack tip    dislocation structure    dual-phase steel    physical short crack
收稿日期: 1995-03-18     
基金资助:国家自然科学基金
王栓柱编著.金属疲劳.福建科学与技术出版社.1986年5月2Bao-TongMa.LairdC.ActaMetall,198937(2):325sSureshS著.王中光等译.材料的疲劳.北京:国防工业出版社.19934柴惠芬,汪立勤,LairdC.金属学报,1989;25:A2015WangZG.SunZM.AiSH.MaterSciEng,1989A113:2596ZhengYS.WangZG.AiSH.,MaterSciEngng.1994A176:3937Abdel-RaoufH.PbehamP.PlumtreeA.Can,MetallQ,197110(2):878PolakJ.KlesnilJ.MaterSciEngng,1976;26:1579LawrenceFV,JonesRC.,MetallTrans,1970;1:36710EshelbyJD,FrankFD.NabarroPRN.PhilMag,1951;42:35111HutchinsonJD,MechJ.PhysSolidy,1968.161312RiceJR.ASTMSTP.1966:418:24713SuzukiH.McEvilyAJ.,MetallTrans,1979;10A:47514LucasJR.GerberichWW.FatigueFractEngMaterStruct,19836(3)271
[1] 赵亚峰, 刘苏杰, 陈云, 马会, 马广财, 郭翼. 铁素体-贝氏体双相钢韧性断裂过程中的夹杂物临界尺寸及孔洞生长[J]. 金属学报, 2023, 59(5): 611-622.
[2] 韩冬, 张炎杰, 李小武. 短程有序对高层错能Cu-Mn合金拉-拉疲劳变形行为及损伤机制的影响[J]. 金属学报, 2022, 58(9): 1208-1220.
[3] 储双杰, 毛博, 胡广魁. 汽车用先进高强度冷轧双相钢的显微组织调控和强韧化机理[J]. 金属学报, 2022, 58(4): 551-566.
[4] 李秀程,孙明煜,赵靖霄,王学林,尚成嘉. 铁素体-贝氏体/马氏体双相钢中界面的定量化晶体学表征[J]. 金属学报, 2020, 56(4): 653-660.
[5] 郭巍巍,齐成军,李小武. 共轭和临界双滑移取向Cu单晶体疲劳位错结构的热稳定性研究*[J]. 金属学报, 2016, 52(6): 761-768.
[6] 尹炎祺,伍翠兰,谢盼,朱恺,田松栗,韩梅,陈江华. 冷轧及退火制备的超细晶粒双相Mn12Ni2MoTi(Al)钢*[J]. 金属学报, 2016, 52(12): 1527-1535.
[7] 邓洁,马佳伟,许以阳,沈耀. 马氏体的分布对双相钢微观变形行为和力学性能的影响[J]. 金属学报, 2015, 51(9): 1092-1100.
[8] 颜莹,卢蒙,李小武. 预疲劳变形对粗晶纯Al单向拉伸行为的影响[J]. 金属学报, 2013, 49(6): 658-666.
[9] 毕宗岳,杨军,牛靖,张建勋. X100高强管线钢焊接接头的断裂韧性[J]. 金属学报, 2013, 49(5): 576-582.
[10] 董丹阳,刘杨,王磊,苏亮进. 应变速率对DP780钢动态拉伸变形行为的影响[J]. 金属学报, 2013, 49(2): 159-166.
[11] 董丹阳, 刘杨, 王磊, 杨玉玲, 李金凤, 金梦梦. 应变速率对DP780钢激光焊接接头动态变形行为的影响[J]. 金属学报, 2013, 49(12): 1493-1500.
[12] 郭巍巍,齐成军,李小武. 一个共面双滑移取向Cu单晶体疲劳位错结构的热稳定性研究[J]. 金属学报, 2013, 49(1): 107-114.
[13] 生海,董超芳,肖葵,李晓刚. 高强铝合金裂纹尖端在3.5NaCl溶液中的微区电化学特性[J]. 金属学报, 2012, 48(4): 414-419.
[14] 聂文金 尚成嘉 关海龙 张晓兵 陈少慧. 铁素体/贝氏体(F/B)双相钢组织调控及其抗变形行为分析[J]. 金属学报, 2012, 48(3): 298-306.
[15] 代启锋 宋仁伯 范午言 郭志飞 关小霞. DP1180双相钢在高应变速率变形条件下应变硬化行为及机制[J]. 金属学报, 2012, 48(10): 1160-1165.