Please wait a minute...
金属学报  2012, Vol. 48 Issue (3): 298-306    DOI: 10.3724/SP.J.1037.2011.00634
  论文 本期目录 | 过刊浏览 |
铁素体/贝氏体(F/B)双相钢组织调控及其抗变形行为分析
聂文金1, 2), 尚成嘉1), 关海龙1), 张晓兵2), 陈少慧2)
1) 北京科技大学材料科学与工程学院, 北京100083
2) 江苏沙钢集团, 张家港 215625
CONTROL OF MICROSTRUCTURES OF FERRITE/ BAINITE (F/B) DUAL-PHASE STEELS AND ANALYSIS OF THEIR RESISTANCE TO DEFORMATION BEHAVIOR
NIE Wenjin1, 2), SHANG Chengjia1),  GUAN Hailong1), ZHANG Xiaobing2),  CHEN Shaohui2)
1) School of Materials Science and Technology, University of Science and Technology Beijing, Beijing 100083
2) Jiangsu Shagang Group, Zhangjiagang 215625
引用本文:

聂文金 尚成嘉 关海龙 张晓兵 陈少慧. 铁素体/贝氏体(F/B)双相钢组织调控及其抗变形行为分析[J]. 金属学报, 2012, 48(3): 298-306.
, , , , . CONTROL OF MICROSTRUCTURES OF FERRITE/ BAINITE (F/B) DUAL-PHASE STEELS AND ANALYSIS OF THEIR RESISTANCE TO DEFORMATION BEHAVIOR[J]. Acta Metall Sin, 2012, 48(3): 298-306.

全文: PDF(6286 KB)  
摘要: 本文针对低C, 高Mn和高Nb化学成分, 采用轧后弛豫控制相变的组织调控技术得到5种不同铁素体/贝氏体(F/B)体积含量的双相组织
钢. 用改进的C-J分析方法分析了软相(铁素体)含量, 研究了晶粒尺寸对加工硬化性能的影响, 以及以铁素体和贝氏体为主的软硬相
混合组织的塑性变形协调关系. 并用电子背散射(EBSD)技术验证了双相组织在均匀塑性变形阶段的协调变形行为. 结果表明, 软硬相
的合理比例有利于提高加工硬化程度(高Rt1.5/Rt0.5), 降低屈强比, 同时能保证较高的均匀变形能力. 铁素体与贝氏体
之间的协调变形是提高双相组织钢应力比和均匀伸长率的主要机制.
关键词 铁素体/贝氏体双相钢加工硬化行为屈强比均匀延伸改进C-J分析方法    
Abstract:Five ferrite/bainite (F/B) dual-phase steels with the chemistry of low carbon, high manganese and high niobium, and different volume fractions of bainite (15%-98%) were produced by control rolling+relaxing+ACC processing. With the help of the modified Crussard-Jaoul (C-J) analysis, the effects of soft phase (ferrite) content and its grain size on the work--hardening behavior of the steels and the cooperative deformation relationship between softer phase and harder phase were studied, which was validated by EBSD analysis. The results illustrate that a reasonable proportion of F/B can be helpful to improve initial work-hardening (a high Rt1.5/Rt0.5), reduce the yield ratio, and maintain a high uniform elongation. It is known that the cooperative deformation of ferrite and bainite is the main mechanism for improving the stress ratio and the uniform elongation of the F/B dual-phase steels.
收稿日期: 2011-10-09     
基金资助:

国家重点基础研究发展计划资助项目2010CB630801

作者简介: 聂文金, 男, 1978年生, 博士生
[1] Li H L, Li X, Ji L K. Weld Pipe Tube, 2007; 30(5):6

(李鹤林, 李霄, 吉玲康. 焊管, 2007; 30(5): 6)

[2] Shang C J, Yang S W, Wang X M, He X L. J Univ Sci Technol Beijing, 2003; 25: 288

(尚成嘉, 杨善武, 王学敏, 贺信莱. 北京科技大学学报, 2003; 25: 288)

[3] Llewellyn D T, Hillis D J. Ironmak Steelmak, 1996; 23(6): 66

[4] Saleh M H, Priestner R. J Mater Process Technol, 2001; 113: 587

[5] Bayram A, Uguz A, UlaM. Mater Charact, 1999; 43: 259

[6] Colla V, Sanctis M D, Dimatteo A, Lovicu G, Solina A, Valentini R. Metall Mater Trans, 2009; 40A: 2557

[7] Fujibayashi A, Omata K. JFE Technol Rev, 2005; 5: 11

[8] Shinmiya T, Ishikawa N, Okatsu M, Endo S, Shikanai N, Kondo J. Proc 16th Int Offshore and Polar Engineering Conference, Lisbon, Portugal: International Society of Offshore and Polar Engineers (ISOPE), 2007: 2963

[9] Jiao D T, Cai Q W, Wu H B. Acta Metall Sin, 2009; 45: 1111

(焦多田, 蔡庆武, 武会宾. 金属学报, 2009; 45: 1111)

[10] Watanabe Y, Ishibashi K, Yoshii K. Nippon Steel Tech Rep, 2004; 90: 53

[11] Homma K, Tanaka M, Matsuoka K, Kasuya T, Kawasaki H. Nippon Steel Tech Rep, 2008; 97: 51

[12] Jiang Z, Guan Z, Lian J. J Mater Sci, 1993; 28: 1814

[13] Son Y I, Lee Y K, Park K T, Lee C S, Shin D H. Acta Mater, 2005; 53: 3125

[14] Podder A S, Bhattacharjee D, Ray R K. ISIJ Int, 2007; 47: 1058

[15] Umemoto M, Liu Z G, Sugimoto S, Tsuchiya K. Metall Mater Trans, 2000; 32A: 1785

[16] Kumar A, Singh S B, Ray K K. Mater Sci Eng, 2008; A474: 270

[17] Bag A, Ray K K, Dwarkadasa E S. Metall Trans, 1999; 30A: 1193

[18] Ishikawa N, Parks D M, Socrate S, Kurihara M. ISIJ Int, 2000; 40: 1170

[19] Huper T, Endo S, Ishikawa O, Osawa K. ISIJ Int, 1999; 39: 288

[20] Shikana N, Kagawa H, Kuriha M. ISIJ Int, 1992; 32: 337

[21] Chang P H, Preban A G. Acta Metall, 1985; 33: 897

[22] DeArdo A J. ISIJ Int, 1995; 35: 946

[23] Sch¨oberl T, Gupta H S, Fratzl P. Mater Sci Eng, 2003; A363: 211

[24] Yu Q B, Zhao X P, Sun B. Iron Steel, 2007; 42: 76

(于庆波, 赵贤平, 孙 斌. 钢铁, 2007; 42: 76)

[25] Jiang Z H, Guan Z Z, Lian J S. Mater Sci Eng, 1995; A190: 55
[1] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[2] 赵征志, 佟婷婷, 赵爱民, 何青, 董瑞, 赵复庆. 1300 MPa级0.14C-2.72Mn-1.3Si钢的显微组织和力学性能及加工硬化行为[J]. 金属学报, 2014, 50(10): 1153-1162.
[3] 张维娜 刘振宇 王国栋. 高锰TRIP钢的形变诱导马氏体相变及加工硬化行为[J]. 金属学报, 2010, 46(10): 1230-1236.
[4] 焦多田 蔡庆伍 武会宾. 轧后冷却制度对X80级抗大变形管线钢组织和屈强比的影响[J]. 金属学报, 2009, 45(9): 1111-1116.
[5] 荆洪阳;霍立兴;张玉凤;丰田政男;藤田明男. 屈强比对高强钢断裂韧性的影响[J]. 金属学报, 1996, 32(3): 265-268.