Please wait a minute...
金属学报  2025, Vol. 61 Issue (9): 1335-1343    DOI: 10.11900/0412.1961.2024.00012
  研究论文 本期目录 | 过刊浏览 |
铝脱氧钢与CaO-MgO-Al2O3 精炼渣反应动力学研究
王博辰1, 任英1(), 邝霜2, 单庆林2, 潘宏伟2, 路博勋2, 石晓伟2, 王举金3, 张立峰3()
1 北京科技大学 冶金与生态工程学院 北京 100083
2 唐山钢铁集团有限责任公司 唐山 063000
3 北方工业大学 机械与材料工程学院 北京 100144
Kinetic Study of Interaction Between Aluminum Deoxidized Steel and CaO-MgO-Al2O3 Refining Slag
WANG Bochen1, REN Ying1(), KUANG Shuang2, SHAN Qinglin2, PAN Hongwei2, LU Boxun2, SHI Xiaowei2, WANG Jujin3, ZHANG Lifeng3()
1 School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 Tangshan Iron and Steel Group Co. Ltd., Tangshan 063000, China
3 School of Mechanical and Materials Engineering, North China University of Technology, Beijing 100144, China
引用本文:

王博辰, 任英, 邝霜, 单庆林, 潘宏伟, 路博勋, 石晓伟, 王举金, 张立峰. 铝脱氧钢与CaO-MgO-Al2O3 精炼渣反应动力学研究[J]. 金属学报, 2025, 61(9): 1335-1343.
Bochen WANG, Ying REN, Shuang KUANG, Qinglin SHAN, Hongwei PAN, Boxun LU, Xiaowei SHI, Jujin WANG, Lifeng ZHANG. Kinetic Study of Interaction Between Aluminum Deoxidized Steel and CaO-MgO-Al2O3 Refining Slag[J]. Acta Metall Sin, 2025, 61(9): 1335-1343.

全文: PDF(1912 KB)   HTML
摘要: 

为了研究CaO-MgO-Al2O3精炼渣对钢中Al2O3夹杂物的改性作用,本工作建立了精炼渣-钢液-夹杂物-耐火材料耦合动力学模型,研究了钢中Al含量以及渣中CaO / Al2O3比值对渣-钢反应中夹杂物改性的影响。结果表明,进入钢液与夹杂物中的Ca含量与钢中Al含量以及渣中CaO / Al2O3比值呈正相关;随着钢中Al含量从0.01%增加至0.75%,钢液中Ca含量从0.07 × 10-6增加至1.47 × 10-6,夹杂物中CaO含量从0.44%增加至7.89%;随着渣中CaO / Al2O3比值从1.0增加至2.2,钢液中Ca含量从0.15 × 10-6增加至0.50 × 10-6,夹杂物中CaO含量从0.88%增加至2.95%;当钢中Al含量为0.8%且CaO / Al2O3比值为2.2时,钢液中总钙量为2.52 × 10-6,夹杂物中CaO含量可达到10.96%。CaO-MgO-Al2O3精炼渣可以将钢中Al2O3夹杂物改性为CaO-Al2O3系夹杂物,其改性程度主要与钢中Al含量有关。

关键词 渣-钢反应铝镇静钢夹杂物动力学模型    
Abstract

This research introduces a coupled dynamic model, which involves refining slag, molten steel, inclusions, and refractory materials, to explore the modification effects of CaO-MgO-Al2O3 refining slag on Al2O3 inclusions within steel. The study examines the impact of varying aluminum contents in steel and CaO / Al2O3 ratios in slag on inclusion modification. Notably, the Ca content in both steel and inclusions exhibits a positive correlation with the Al content in steel and the CaO / Al2O3 ratio in the slag. An increase in the Al content in steel from 0.01% to 0.75% led to a rise in the Ca content in the molten steel from 0.07 × 10-6 to 1.47 × 10-6, accompanied by an increase in the CaO content in inclusions from 0.44% to 7.89%. Additionally, elevating the CaO / Al2O3 ratio in the slag from 1.0 to 2.2 enhanced the Ca content in the molten steel from 0.15 × 10-6 to 0.50 × 10-6 and increased the CaO content in inclusions from 0.88% to 2.95%. When the Al content in the steel reached 0.8% and the CaO / Al2O3 ratio in the slag stood at 2.2, the total Ca content in the steel escalated to 2.52 × 10-6, while the CaO content in inclusions surged to 10.96%. These results affirm that CaO-MgO-Al2O3 refining slag is capable of effectively transforming Al2O3 inclusions into CaO-Al2O3 inclusions, with the modification extent predominantly influenced by the Al content in the steel.

Key wordsslag-steel reaction    aluminum-killed steel    inclusion    kinetic model
收稿日期: 2024-01-17     
ZTFLH:  TF407  
基金资助:国家重点研发计划项目(2023YFB3709900);国家自然科学基金项目(U22A20171);河钢集团重点科技项目(HG-2022103)
通讯作者: 张立峰,zhanglifeng@ncut.edu.cn,主要从事钢中非金属夹杂物与冶金过程数值模拟研究;
任 英,yingren@ustb.edu.cn,主要从事钢中非金属夹杂物控制研究
Corresponding author: ZHANG Lifeng, professor, Tel: 13911868419, E-mail: zhanglifeng@ncut.edu.cn;
REN Ying, professor, Tel: 13811903700, E-mail: yingren@ustb.edu.cn
作者简介: 王博辰,男,2000生,硕士生
图1  精炼渣-钢液-夹杂物-耐火材料反应动力学模型示意图
ElementMgAlOCa
Mg0-0.12-4600
Al-0.1380.5 / T3.21 - 9720 / T-0.047
O-3001.96 - 5750 / T0.76 - 1750 / T-515
Ca0-0.072-12930
表1  一阶相互作用系数[40,41]
CompoundΔGθ=a+bT
ab
3CaO·Al2O3-21757-29.288
12CaO·7 Al2O3617977-612.119
CaO·Al2O359413-59.413
CaO·2Al2O3-16736-25.522
CaO·6Al2O3-22954-31.798
MgO·Al2O3-18828-6.276
表2  CaO-MgO-Al2O3渣系中的组元及其标准Gibbs自由能(ΔGθ)[43]
图2  动力学模型计算过程示意图
图3  钢液中总氧量(T.O)、总镁量(T.Mg)、总钙量(T.Ca)和夹杂物含量的模型计算结果与实验结果[19]的对比
图4  不同Al含量下钢液中T.Mg、T.Ca及夹杂物中MgO和CaO含量的变化
图5  渣中不同CaO / Al2O3比值下钢液中T.Ca和夹杂物中CaO含量的变化
图6  钢中Al含量和渣中CaO / Al2O3比值对钢液和夹杂物终点成分的影响
[1] Zhang L F, Thomas B G. State of the art in evaluation and control of steel cleanliness [J]. ISIJ Int., 2003, 43: 271
[2] Zhang L F, Thomas B G. State of the art in the control of inclusions during steel ingot casting [J]. Metall. Mater. Trans., 2006, 37B: 733
[3] Wang C, Tang W, Zhang J S, et al. Effect of low basicity refining slag on evolution and removal of oxide inclusions in 55SiCrA spring steel [J]. J. Iron Steel Res. Int., 2023, 30: 1755
doi: 10.1007/s42243-023-00941-5
[4] Yan Z H, Zhao Q, Han C Z, et al. Effects of iron oxide on crystallization behavior and spatial distribution of spinel in stainless steel slag [J]. Int. J. Miner. Metall. Mater., 2024, 31: 292
[5] Park J H, Todoroki H. Control of MgO·Al2O3 spinel inclusions in stainless steels [J]. ISIJ Int., 2010, 50: 1333
[6] Wang K P, Wang Y, Xie W, et al. Influence of RH vacuum treatment on spinel inclusions of high carbon chromium bearing steel [J]. Iron Steel, 2023, 58(1): 108
[6] 王昆鹏, 王 郢, 谢 伟 等. RH真空处理对高碳铬轴承钢尖晶石夹杂物的影响 [J]. 钢铁, 2023, 58(1): 108
doi: 10.13228/j.boyuan.issn0449-749x.20220371
[7] Zhang J B, Xu J F, Wang K P, et al. Formation mechanism of MgO·Al2O3 inclusions in GCr15 steel in continuous casting [J]. Iron Steel, 2023, 58(5): 83
[7] 张建斌, 徐建飞, 王昆鹏 等. GCr15轴承钢连铸过程MgO·Al2O3夹杂物形成机理 [J]. 钢铁, 2023, 58(5): 83
doi: 10.13228/j.boyuan.issn0449-749x.20220703
[8] Ren Y, Liu C Y, Gao X, et al. Dissolution behavior of Mg and Ca from dolomite refractory into Al-killed molten steel [J]. ISIJ Int., 2021, 61: 2391
[9] Yang G, Yang W, Zhang L F. Calcium treatment modification and influencing factors of inclusions in aluminum-killed steel [J]. Iron Steel, 2022, 57(12): 66
[9] 杨 光, 杨 文, 张立峰. 铝镇静钢中夹杂物钙处理改性及其影响因素 [J]. 钢铁, 2022, 57(12): 66
[10] Wang Z L, Bao Y P, Gu C, et al. Key metallurgical technology for high-quality bearing steel production based on the nonaluminum deoxidation process [J]. Chin. J. Eng., 2022, 44: 1607
[10] 王仲亮, 包燕平, 顾 超 等. 基于非铝脱氧工艺的高品质轴承钢关键冶金技术研究 [J]. 工程科学学报, 2022, 44: 1607
[11] Liu N, Cheng G, Ren Y, et al. Effect of calcium in ferrosilicon alloys on inclusions in Al-killed steel [J]. Chin. J. Eng., 2022, 44: 2069
[11] 刘 南, 成 功, 任 英 等. 硅铁合金中金属钙元素对铝脱氧钢中夹杂物的影响 [J]. 工程科学学报, 2022, 44: 2069
[12] Wang Z L, Bao Y P. Development and prospects of molten steel deoxidation in steelmaking process [J]. Int. J. Miner. Metall. Mater., 2024, 31: 18
[13] Harada A, Maruoka N, Shibata H, et al. Kinetic analysis of compositional changes in inclusions during ladle refining [J]. ISIJ Int., 2014, 54: 2569
[14] Zhao X J, Zhang J Y, Li C J. Analysis of formation mechanism about Ca-Mg-Al spinel-type inclusions in cold thin rolling sheet [J]. J. Iron Steel Res., 2022, 34: 664
[14] 赵显久, 张捷宇, 李传军. 冷轧薄板钙镁铝尖晶石类夹杂物成因分析 [J]. 钢铁研究学报, 2022, 34: 664
doi: 10.3228/j.boyuan.issn1001-963.0210182
[15] Zu L, Yang J, Kong L Z, et al. Research status of reaction between ladle refractories and molten steel [J]. J. Iron Steel Res., 2022, 34: 12
doi: 10.13228/j.boyuan.issn1001-0963.20210230
[15] 祖 琳, 杨 杰, 孔令种 等. 钢包耐火材料与钢液反应的研究现状 [J]. 钢铁研究学报, 2022, 34: 12
[16] Liu C S, Hou S W, Liu X Q, et al. Optimization of refining slag for 30Cr1Mo1V steam turbine rotor steel [J]. J. Iron Steel Res., 2022, 34: 1098
doi: 10.13228/j.boyuan.issn1001-0963.20210352
[16] 刘成松, 侯松威, 刘晓芹 等. 30Cr1Mo1V汽轮机转子钢的精炼渣优化 [J]. 钢铁研究学报, 2022, 34: 1098
doi: 10.13228/j.boyuan.issn1001-0963.20210352
[17] Zheng D L, Ma G J, Zhang X, et al. Evolution of MnS and MgO·Al2O3 inclusions in AISI M35 steel during electroslag remelting [J]. J. Iron Steel Res. Int., 2021, 28: 1605
[18] Peng Y B, Liu C S, Yang L, et al. Improving cleanliness of 30Cr2Ni4MoV low-pressure rotor steel by CaO-SiO2-MgO-Al2O3 slag refining [J]. J. Iron Steel Res. Int., 2022, 29: 1434
[19] Liu C Y, Gao X, Ueda S, et al. Change in composition of inclusions through the reaction between Al-killed steel and the slag of CaO and MgO saturation [J]. ISIJ Int., 2019, 59: 268
[20] Mu H Y, Zhang T S, Fruehan R J, et al. Reduction of CaO and MgO slag components by Al in liquid Fe [J]. Metall. Mater. Trans., 2018, 49B: 1665
[21] Yu H X, Yang D X, Zhang J M, et al. Effect of Al content on the reaction between Fe-10Mn-xAl (x = 0.035wt%, 0.5wt%, 1wt%, and 2wt%) steel and CaO-SiO2-Al2O3-MgO slag [J]. Int. J. Miner. Metall. Mater., 2022, 29: 256
[22] Okuyama G, Yamaguchi K, Takeuchi S, et al. Effect of slag composition on the kinetics of formation of Al2O3-MgO inclusions in aluminum killed ferritic stainless steel [J]. ISIJ Int., 2000, 40: 121
[23] Harada A, Matsui A, Nabeshima S. Composition change of inclusions in high carbon steel before and after addition of aluminum [J]. ISIJ Int., 2021, 61: 715
[24] Kim J I, Kim S J. Evolution of Mg-Al-based inclusions with changes in Mg content during ladle treatment based on a coupled reaction model [J]. ISIJ Int., 2020, 60: 691
[25] Ji Y Q, Liu C Y, Lu Y, et al. Effects of FeO and CaO/Al2O3 ratio in slag on the cleanliness of Al-killed steel [J]. Metall. Mater. Trans., 2018, 49B: 3127
[26] Zhang Y, Ren Y, Zhang L F. Kinetic study on compositional variations of inclusions, steel and slag during refining process [J]. Metall. Res. Technol., 2018, 115: 415
[27] Cheng G. Calcium aluminate inclusions in GCr15 bearing steel [D]. Beijing: University of Science and Technology Beijing, 2021: 74
[27] 成 功. GCr15轴承钢中钙铝酸盐类夹杂物 [D]. 北京: 北京科技大学, 2021: 74
[28] Liu C Y, Jia Y, Hao L X, et al. Effects of slag composition and impurities of alloys on the inclusion transformation during industrial ladle furnace refining [J]. Metals, 2021, 11: 763
[29] Liu C Y, Huang F X, Wang X H. The effect of refining slag and refractory on inclusion transformation in extra low oxygen steels [J]. Metall. Mater. Trans., 2016, 47B: 999
[30] Liu C Y, Huang F X, Suo J L, et al. Effect of magnesia-carbon refractory on the kinetics of MgO·Al2O3 spinel inclusion generation in extra-low oxygen steels [J]. Metall. Mater. Trans., 2016, 47B: 989
[31] Kumar D, Pistorius P C. Calcium transfer to oxide inclusions in Al-killed steel without calcium treatment [J]. Metall. Mater. Trans., 2021, 52B: 163
[32] Gao F B, Wang F M, Zhang X, et al. Effect of Al content in molten steel on interaction between MgO-C refractory and SPHC steel [J]. J. Iron Steel Res. Int., 2024, 31: 838
[33] Wang J J, Zhang L F, Wen T J, et al. Kinetic prediction for the composition of inclusions in the molten steel during the electroslag remelting [J]. Metall. Mater. Trans., 2021, 52B: 1521
[34] Wang J J, Zhang L F, Cheng G, et al. Dynamic mass variation and multiphase interaction among steel, slag, lining refractory and nonmetallic inclusions: Laboratory experiments and mathematical prediction [J]. Int. J. Miner. Metall. Mater., 2021, 28: 1298
[35] Harada A, Maruoka N, Shibata H, et al. A kinetic model to predict the compositions of metal, slag and inclusions during ladle refining: Part 2. Condition to control the inclusion composition [J]. ISIJ Int., 2013, 53: 2118
[36] Harada A, Maruoka N, Shibata H, et al. A kinetic model to predict the compositions of metal, slag and inclusions during ladle refining: Part 1. Basic concept and application [J]. ISIJ Int., 2013, 53: 2110
[37] Zhang Y X, Zhang L F, Wang J J, et al. Concepts and characteristic curves for the kinetic transformation of nonmetallic inclusions in liquid steel during solidification and cooling and in solid steel during heating process [J]. Chin. J. Eng., 2023, 45: 369
[37] 张月鑫, 张立峰, 王举金 等. 钢液凝固与冷却过程及固体钢加热过程钢中非金属夹杂物成分动力学转变的几个概念和特征曲线 [J]. 工程科学学报, 2023, 45: 369
[38] Shin J H, Park J H. Modification of inclusions in molten steel by Mg-Ca transfer from top slag: Experimental confirmation of the ‘refractory-slag-metal-inclusion (ReSMI)’ multiphase reaction model [J]. Metall. Mater. Trans., 2017, 48B: 2820
[39] Shin J H, Chung Y, Park J H. Refractory-slag-metal-inclusion multiphase reactions modeling using computational thermodynamics: Kinetic model for prediction of inclusion evolution in molten steel [J]. Metall. Mater. Trans., 2017, 48B: 46
[40] Itoh H, Hino M, Ban-Ya S. Thermodynamics on the formation of spinel nonmetallic inclusion in liquid steel [J]. Metall. Mater. Trans., 1997, 28B: 953
[41] Hino M, Ito K. Thermodynamic Data for Steelmaking [M]. Korea: Tohoku University Press, 2010: 260
[42] Huang F X, Zhang L F, Zhang Y, et al. Kinetic modeling for the dissolution of MgO lining refractory in Al-killed steels [J]. Metall. Mater. Trans., 2017, 48B: 2195
[43] Yang X M, Shi C B, Zhang M, et al. A thermodynamic model of sulfur distribution ratio between CaO-SiO2-MgO-FeO-MnO-Al2O3 slags and molten steel during LF refining process based on the ion and molecule coexistence theory [J]. Metall. Mater. Trans., 2011, 42B: 1150
[44] Ni P Y, Tanaka T, Suzuki M, et al. A kinetic model of mass transfer and chemical reactions at a steel/slag interface under effect of interfacial tensions [J]. ISIJ Int., 2019, 59: 737
[45] Danckwerts P V. Kinetics of the absorption of carbon dioxide in water [J]. Research, 1949, 2: 494
[46] Hou D, Jiang Z H, Dong Y W, et al. Effect of slag composition on the oxidation kinetics of alloying elements during electroslag remelting of stainless steel: Part-1 Mass-transfer model [J]. ISIJ Int., 2017, 57: 1400
[47] Wei J H, Mitchell A. Changes in composition during A.C. ESR——I. Theoretical development [J]. Acta Metall. Sin., 1984, 20: B261
[47] 魏季和, Mitchell A. 交流电渣重熔过程中的成分变化——Ⅰ.理论传质模型 [J]. 金属学报, 1984, 20: B261
[48] Wang L T, Zhang Q Y, Peng S H, et al. Mathematical model for growth and removal of inclusion in a multi-tuyere ladle during gas-stirring [J]. ISIJ Int., 2005, 45: 331
[1] 孟泽, 李光强, 李腾飞, 郑庆, 曾斌, 刘昱. Ce75Cr1钢洁净度、组织与耐点蚀性能的影响[J]. 金属学报, 2024, 60(9): 1229-1238.
[2] 陈润农, 李昭东, 曹燕光, 张启富, 李晓刚. 9%Cr合金钢在含Cl环境中的初期腐蚀行为及局部腐蚀起源[J]. 金属学报, 2023, 59(7): 926-938.
[3] 张月鑫, 王举金, 杨文, 张立峰. 冷却速率对管线钢中非金属夹杂物成分演变的影响[J]. 金属学报, 2023, 59(12): 1603-1612.
[4] 孙阳庭, 李一唯, 吴文博, 蒋益明, 李劲. CaMg掺杂下夹杂物对C70S6非调质钢点蚀行为的影响[J]. 金属学报, 2022, 58(7): 895-904.
[5] 刘洁, 徐乐, 史超, 杨少朋, 何肖飞, 王毛球, 时捷. 稀土Ce对非调质钢中硫化物特征及微观组织的影响[J]. 金属学报, 2022, 58(3): 365-374.
[6] 朱苗勇, 邓志银. 钢精炼过程非金属夹杂物演变与控制[J]. 金属学报, 2022, 58(1): 28-44.
[7] 许坤, 王海川, 孔辉, 吴朝阳, 张战. 一种新分组团簇动力学模型模拟铝合金中的Al3Sc析出[J]. 金属学报, 2021, 57(6): 822-830.
[8] 唐海燕, 刘锦文, 王凯民, 肖红, 李爱武, 张家泉. 连铸中间包加热技术及其冶金功能研究进展[J]. 金属学报, 2021, 57(10): 1229-1245.
[9] 周红伟, 白凤梅, 杨磊, 陈艳, 方俊飞, 张立强, 衣海龙, 何宜柱. 1100 MPa级高强钢的低周疲劳行为[J]. 金属学报, 2020, 56(7): 937-948.
[10] 孙飞龙, 耿克, 俞峰, 罗海文. 超洁净轴承钢中夹杂物与滚动接触疲劳寿命的关系[J]. 金属学报, 2020, 56(5): 693-703.
[11] 张新房, 闫龙格. 脉冲电流调控金属熔体中的非金属夹杂物[J]. 金属学报, 2020, 56(3): 257-277.
[12] 冯业飞,周晓明,邹金文,王超渊,田高峰,宋晓俊,曾维虎. 粉末高温合金中SiO2夹杂物与基体的界面反应机理及对其变形行为的影响[J]. 金属学报, 2019, 55(11): 1437-1447.
[13] 黄宇, 成国光, 谢有. 稀土Ce对钎具钢中夹杂物的改质机理研究[J]. 金属学报, 2018, 54(9): 1253-1261.
[14] 马歌, 左秀荣, 洪良, 姬颖伦, 董俊媛, 王慧慧. 深海用X70管线钢焊接接头腐蚀行为研究[J]. 金属学报, 2018, 54(4): 527-536.
[15] 王新华,李秀刚,李强,黄福祥,李海波,杨建. X80管线钢板中条串状CaO-Al2O3系非金属夹杂物的控制[J]. 金属学报, 2013, 49(5): 553-561.