Please wait a minute...
金属学报  2025, Vol. 61 Issue (7): 1082-1092    DOI: 10.11900/0412.1961.2023.00240
  研究论文 本期目录 | 过刊浏览 |
锆合金氧化膜中相变与裂纹演化的相场模拟
王小齐1,2, 张金虎1,2(), 郭辉1,2, 李学雄1, 许海生1,2, 柏春光1,2, 徐东生1,2(), 杨锐1,2
1 中国科学院金属研究所 沈阳 110016
2 中国科学技术大学 材料科学与工程学院 沈阳 110016
Phase-Field Simulations of Phase Transformation and Crack Evolution in Zirconium Alloy Oxide Film
WANG Xiaoqi1,2, ZHANG Jinhu1,2(), GUO Hui1,2, LI Xuexiong1, XU Haisheng1,2, BAI Chunguang1,2, XU Dongsheng1,2(), YANG Rui1,2
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

王小齐, 张金虎, 郭辉, 李学雄, 许海生, 柏春光, 徐东生, 杨锐. 锆合金氧化膜中相变与裂纹演化的相场模拟[J]. 金属学报, 2025, 61(7): 1082-1092.
Xiaoqi WANG, Jinhu ZHANG, Hui GUO, Xuexiong LI, Haisheng XU, Chunguang BAI, Dongsheng XU, Rui YANG. Phase-Field Simulations of Phase Transformation and Crack Evolution in Zirconium Alloy Oxide Film[J]. Acta Metall Sin, 2025, 61(7): 1082-1092.

全文: PDF(1628 KB)   HTML
摘要: 

锆合金因具有较低的热中子吸收截面、优良的耐腐蚀性能和力学性能,是轻水堆核电站中重要的核反应堆结构材料。然而,在高温及腐蚀条件下,锆合金表面会发生氧化腐蚀,当氧化膜厚度达2~3 μm时,其生长速率会急剧增大,即发生腐蚀动力学转变,限制了锆合金在反应堆中的使用寿命。本工作借助相场动力学方法对锆合金氧化膜中四方相ZrO2 (t-ZrO2)向单斜相ZrO2 (m-ZrO2)转变及氧化膜-金属体系中裂纹的扩展行为进行了研究。模拟结果表明,氧化膜中发生t-ZrO2→m-ZrO2转变时,生成的m-ZrO2相呈“芒果状”且主要受压应力作用,而基体在沿m-ZrO2晶粒的长轴和短轴方向上分别受到压应力和拉应力,且应力均随m-ZrO2的长大而增大。应力下裂纹扩展模拟发现,氧化膜中平行于其与金属界面的横向裂纹,可在垂直于界面的拉伸应力作用下扩展,并可与邻近的横向裂纹及缺陷相互连接,形成缺陷层。氧化膜中垂直于界面的纵向裂纹在扩展至界面后未向金属基体中继续扩展,而是向氧化膜中产生分叉,其继续扩展将促进氧化层从基体上剥落。

关键词 锆合金相场法相变裂纹    
Abstract

Zirconium alloys are considered as important nuclear reactor structural materials owing to their low thermal neutron absorption cross-section, good corrosion resistance, and good mechanical properties in high-temperature and high-pressure water. However, under high temperature and corrosion conditions, an oxide film forms on the surface of zirconium alloys, and its growth rate increases rapidly when the thickness is 2-3 μm, leading to a transition in corrosion kinetics, which limits its service life in the reactor. In this study, the transformation of zirconia from tetragonal (t-ZrO2) to monoclinic (m-ZrO2) and the crack propagation behavior in the oxidation layer on zirconium alloys have been investigated using phase-field simulation. During the transformation of t-ZrO2 to m-ZrO2 in the oxide film, the t-ZrO2 matrix undergoes compressive and tensile stresses along the long and short axes of the m-ZrO2 precipitate, respectively, whereas the m-ZrO2 precipitate primarily undergoes compressive stress during the transformation. Moreover, the stresses increase with the growth of the m-ZrO2 grains. The simulations of crack evolution reveal that the cracks in the oxidation layer parallel to the oxide-metal interface expand under applied tensile stress perpendicular to the interface. Such cracks may connect with other isolated cracks and defects forming a defect layer. Upon extending to the oxide-metal interface, surface cracks perpendicular to the interface bifurcate in the oxide rather than penetrate into the metal matrix, which facilitates the peeling off of the oxidation layer from the substrate.

Key wordszircaloy    phase-field method    phase transformation    crack
收稿日期: 2023-06-05     
ZTFLH:  TG146.4  
基金资助:国家重点研发计划项目(2021YFB3702604);中科院网信专项项目(CAS-WX2021PY-0103)
通讯作者: 徐东生,dsxu@imr.ac.cn,主要从事钛合金计算设计与工艺优化研究
张金虎,jinhuzhang@imr.ac.cn,主要从事钛基合金微观组织演变模拟研究
作者简介: 王小齐,男,1997年生,硕士生
ParameterSymbolValue
Chemical driving forceΔG36.8 × 106 J·m-3
Gradient energy coefficientkη1 × 10-8 J·m-1
Energy density coefficienta0.14
Energy density coefficientb12.42
Energy density coefficientc12.28
Kinetic coefficientL2 m3·J-1·s-1
表1  模拟计算中的相关参数[24]
ParametersSymbolValue
Young's modulus of t-ZrO2Et212 GPa
Young's modulus of m-ZrO2Em241 GPa
Poisson's ratio of t-ZrO2νt0.33
Poisson's ratio of m-ZrO2νm0.29
Eigenstrain of t-ZrO2εij0 (t-ZrO2)0.00490.07610.07610.0180
Eigenstrain of m-ZrO2εij0 (m-ZrO2)0.0049-0.0761-0.07610.0180

Eigenstrain of t-ZrO2

(after 90° rotation about Y axis)

εij0' (t-ZrO2)00.076100.0180

Eigenstrain of m-ZrO2

(after 90° rotation about Y axis)

εij0' (m-ZrO2)0-0.076100.0180
表2  弹性能计算所需相关参数[24]
图1  带核单晶相场模型示意图
图2  m-ZrO2晶粒长大过程中的形貌演化
图3  m-ZrO2晶粒长大过程中的应力分布演化
图4  绕Y轴旋转90°后m-ZrO2析出相的长大过程
图5  绕Y轴旋转90°后晶粒长大过程中的应力分布演化
图6  氧化膜中平行于氧化物-金属界面的裂纹示意图
图7  氧化膜中平行于氧化物-金属界面裂纹在扩展前后应力与场变量分布的相场模拟结果
图8  氧化膜中平行于氧化物-金属界面的裂纹演化模拟得到的拉伸力-位移曲线
图9  垂直于氧化物-金属界面的裂纹模型示意图
图10  相场模拟垂直氧化物-金属界面的裂纹演化
1 Zinkle S J, Was G S. Materials challenges in nuclear energy [J]. Acta Mater., 2013, 61: 735
2 Motta A T, Couet A, Comstock R J. Corrosion of zirconium alloys used for nuclear fuel cladding [J]. Annu. Rev. Mater. Res., 2015, 45: 311
3 Liao J J, Zhang J S, Zhang W, et al. Critical behavior of interfacial t-ZrO2 and other oxide features of zirconium alloy reaching critical transition condition [J]. J. Nucl. Mater., 2021, 543: 152474
4 Hu J, Lin W T, Lv Q Y, et al. Oxide formation mechanism of a corrosion-resistant CZ1 zirconium alloy [J]. J. Mater. Sci. Technol., 2023, 147: 6
doi: 10.1016/j.jmst.2022.12.002
5 Ni N, Hudson D, Wei J, et al. How the crystallography and nanoscale chemistry of the metal/oxide interface develops during the aqueous oxidation of zirconium cladding alloys [J]. Acta Mater., 2012, 60: 7132
6 Evans A G, Hutchinson J W, Fleck N A, et al. The topological design of multifunctional cellular metals [J]. Prog. Mater. Sci., 2001, 46: 309
7 Han E-H. Research trends on micro and nano-scale materials degradation in nuclear power plant [J]. Acta Metall. Sin., 2011, 47: 769
7 韩恩厚. 核电站关键材料在微纳米尺度上的环境损伤行为研究——进展与趋势 [J]. 金属学报, 2011, 47: 769
doi: 10.3724/SP.J.1037.2011.00441
8 Kautz E J, Gwalani B, Lambeets S V M, et al. Rapid assessment of structural and compositional changes during early stages of zirconium alloy oxidation [J]. npj Mater. Degrad., 2020, 4: 29
9 Wadman B, Andrén H O, Falk L K L. Atom probe analysis of thin oxide layers on zircaloy needles [J]. J. Phys. Colloq., 1989, 50: C8-303
10 Garner A, Gholinia A, Frankel P, et al. The microstructure and microtexture of zirconium oxide films studied by transmission electron backscatter diffraction and automated crystal orientation mapping with transmission electron microscopy [J]. Acta Mater., 2014, 80: 159
11 Liao J J, Zhang W, Zhang J S, et al. Periodic densification-transition behavior of Zr-Sn-Nb-Fe-V alloys during uniform corrosion in superheated steam [J]. Acta Metall. Sin., 2023, 59: 289
11 廖京京, 张 伟, 张君松 等. Zr-Sn-Nb-Fe-V合金在过热蒸汽中的周期性钝化-转折行为 [J]. 金属学报, 2023, 59: 289
doi: 10.11900/0412.1961.2021.00214
12 Gong W J, Zhang H L, Qiao Y, et al. Grain morphology and crystal structure of pre-transition oxides formed on Zircaloy-4 [J]. Corros. Sci., 2013, 74: 323
13 Yilmazbayhan A, Breval E, Motta A T, et al. Transmission electron microscopy examination of oxide layers formed on Zr alloys [J]. J. Nucl. Mater., 2006, 349: 265
14 Lin C, Ruan H H, Shi S Q. Mechanical-chemical coupling phase-field modeling for inhomogeneous oxidation of zirconium induced by stress-oxidation interaction [J]. npj Mater. Degrad., 2020, 4: 22
15 Zhang H X, Li Z K, Zhang J J, et al. Crystal structure of oxide film of NZ2 alloy corroded in different mediums [J]. Chin. J. Mater. Res., 2008, 22: 327
15 章海霞, 李中奎, 张建军 等. NZ2合金在不同介质中腐蚀后氧化膜的晶体结构 [J]. 材料研究学报, 2008, 22: 327
16 Han E-H, Wang J Q. Effect of surface state on corrosion and stress corrosion for nuclear materials [J]. Acta Metall. Sin., 2023, 59: 513
16 韩恩厚, 王俭秋. 表面状态对核电关键材料腐蚀和应力腐蚀的影响 [J]. 金属学报, 2023, 59: 513
doi: 10.11900/0412.1961.2023.00123
17 Sakuma T. Phase transformation and microstructure of partially-stabilized zirconia [J]. Trans. Jpn. Inst. Met., 1988, 29: 879
18 Zhao Y H. Understanding and design of metallic alloys guided by phase-field simulations [J]. npj Comput. Mater., 2023, 9: 94
19 Wolten G M. Diffusionless phase transformations in zirconia and hafnia [J]. J. Am. Ceram. Soc., 1963, 46: 418
20 Allen S M, Cahn J W. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening [J]. Acta Metall., 1979, 27: 1085
21 Zhao B J, Zhao Y H, Sun Y Y, et al. Effect of Mn composition on the nanometer Cu-rich phase of Fe-Cu-Mn alloy by phase field method [J]. Acta Metall. Sin., 2019, 55: 593
doi: 10.11900/0412.1961.2018.00506
21 赵宝军, 赵宇宏, 孙远洋 等. Mn含量对Fe-Cu-Mn合金纳米富Cu析出相影响的相场法研究 [J]. 金属学报, 2019, 55: 593
doi: 10.11900/0412.1961.2018.00506
22 Yang W K, Jiang X A, Tian X L, et al. Phase-field simulation of nano-α′ precipitates under irradiation and dislocations [J]. J. Mater. Res. Technol., 2023, 22: 1307
23 Chen L Q, Zhao Y H. From classical thermodynamics to phase-field method [J]. Prog. Mater. Sci., 2022, 124: 100868
24 Mamivand M, Asle Zaeem M, El Kadiri H, et al. Phase field modeling of the tetragonal-to-monoclinic phase transformation in zirconia [J]. Acta Mater., 2013, 61: 5223
25 Biner S B. Programming Phase-Field Modeling [M]. Switzerland: Springer, 2017: 169
26 Moulinec H, Suquet P. A fast numerical method for computing the linear and nonlinear mechanical properties of composites [J]. C. R. Acad. Sci. Paris, 1994, 318: 1417
27 Moulinec H, Suquet P. A numerical method for computing the overall response of nonlinear composites with complex microstructure [J]. Comput. Methods Appl. Mech. Eng., 1998, 157: 69
28 Michel J C, Moulinec H, Suquet P. Effective properties of composite materials with periodic microstructure: A computational approach [J]. Comput. Methods Appl. Mech. Eng., 1999, 172: 109
29 Michel J C, Moulinec H, Suquet P. A computational scheme for linear and non-linear composites with arbitrary phase contrast [J]. Int. J. Numer. Meth. Eng., 2001, 52: 139
30 Goswami S, Anitescu C, Rabczuk T. Adaptive fourth-order phase field analysis for brittle fracture [J]. Comput. Methods Appl. Mech. Eng., 2020, 361: 112808
31 Bourdin B, Francfort G A, Marigo J J. The variational approach to fracture [J]. J. Elast., 2008, 91: 5
32 Bourdin B, Francfort G A, Marigo J J. Numerical experiments in revisited brittle fracture [J]. J. Mech. Phys. Solids, 2000, 48: 797
33 Sun X K, Davidson B D. A direct energy balance approach for determining energy release rates in three and four point bend end notched flexure tests [J]. Int. J. Fract., 2005, 135: 51
34 Zhou B X, Li Q, Yao M Y, et al. Microstructure of oxide films formed on zircaloy-4 [J]. Corros. Prot., 2009, 30: 589
34 周邦新, 李 强, 姚美意 等. Zr-4合金氧化膜的显微组织研究 [J]. 腐蚀与防护, 2009, 30: 589
35 Tejland P, Andrén H O. Origin and effect of lateral cracks in oxide scales formed on zirconium alloys [J]. J. Nucl. Mater., 2012, 430: 64
36 Vermaak N, Parry G, Estevez R, et al. New insight into crack formation during corrosion of zirconium-based metal-oxide systems [J]. Acta Mater., 2013, 61: 4374
37 Duriez C, Dupont T, Schmet B, et al. Zircaloy-4 and M5® high temperature oxidation and nitriding in air [J]. J. Nucl. Mater., 2008, 380: 30
38 Beuzet E, Lamy J S, Bretault A, et al. Modelling of Zry-4 cladding oxidation by air, under severe accident conditions using the MAAP4 code [J]. Nucl. Eng. Des., 2011, 241: 1217
39 Zhou B X, Liu W Q, Li Q, et al. Mechanism of LiOH aqueous solution accelerating corrosion rate of zircaloy-4 [J]. Chin. J. Mater. Res., 2004, 18: 225
39 周邦新, 刘文庆, 李 强 等. LiOH水溶液提高Zr-4合金腐蚀速率的机理 [J]. 材料研究学报, 2004, 18: 225
[1] 孙欢腾, 马运柱, 蔡青山, 王健宁, 段有腾, 张梦祥. fccbcc钢板在超高速撞击下的微观组织差异[J]. 金属学报, 2025, 61(7): 1011-1023.
[2] 王强, 李小兵, 郝俊杰, 陈波, 张滨, 张二林, 刘奎. 一种新型Ti-Al-Mn-Nb合金的固态相变行为[J]. 金属学报, 2025, 61(7): 1060-1070.
[3] 张文彬, 李小龙, 郝硕, 刘胜杰, 蔡星周, 陈雷, 金淼. TRIP型双相不锈钢Fe-19.6Cr-2Ni-2.9Mn-1.6Si的微裂纹形核及扩展[J]. 金属学报, 2025, 61(4): 608-618.
[4] 杨明辉, 李星吾, 孙崇昊, 阮莹. 定向凝固与固态相变双联协控下Monel K-500合金的组织和力学性能[J]. 金属学报, 2025, 61(4): 561-571.
[5] 梁炫, 侯廷平, 张东, 谭昕暘, 吴开明. 中碳Nb合金化钢液析碳化物的析出行为[J]. 金属学报, 2025, 61(4): 653-664.
[6] 贾春妮, 刘腾远, 郑成武, 王培, 李殿中. 中锰钢奥氏体中化学界面变形行为的晶体塑性研究[J]. 金属学报, 2025, 61(2): 349-360.
[7] 齐敏, 王倩, 马英杰, 曹贺萌, 黄森森, 雷家峰, 杨锐. Ti6246钛合金 βα 相变中晶界 α 相生长行为及其对微织构的影响[J]. 金属学报, 2025, 61(2): 265-277.
[8] 余东, 马威龙, 王亚莉, 王锦程. Au-Pt合金凝固-固态相变微观组织演化相场法模拟[J]. 金属学报, 2025, 61(1): 109-116.
[9] 唐景韬, 姚英杰, 张游游, 吴文华, 李宇博, 陈浩, 杨志刚. 高强钢中亚稳奥氏体对断裂韧性影响的研究进展[J]. 金属学报, 2025, 61(1): 77-87.
[10] 公维佳, 梁森茂, 张敬翊, 李时磊, 孙勇, 李中奎, 李金山. 冷却速率对锆合金氢化物析出的影响[J]. 金属学报, 2024, 60(9): 1155-1164.
[11] 刘彩艳, 冯泽华, 张云鹏, 余康, 吴璐, 马聪, 张静. Fe-Cr合金气泡演化动力学的相场法模拟[J]. 金属学报, 2024, 60(9): 1279-1288.
[12] 董蔚霞, 姚忠正, 刘思楠, 陈国星, 王循理, 吴桢舵, 兰司. Pd-Si金属玻璃液-液相变过程的短程-中程序结构演变规律[J]. 金属学报, 2024, 60(8): 1119-1129.
[13] 王延绪, 龚武, 苏玉华, 李昺. 中子表征技术在金属结构材料研究中的应用[J]. 金属学报, 2024, 60(8): 1001-1016.
[14] 申洋, 谷征满, 王聪. 铁素体系耐热钢焊接热影响区相变行为的CSLM原位观察[J]. 金属学报, 2024, 60(6): 802-816.
[15] 杨伟阳, 黎先浩, 赵鹏飞, 于海彬, 赵松山, 罗海文. 取向硅钢不同常化工艺下组织及抑制剂的变化[J]. 金属学报, 2024, 60(5): 605-615.