|
|
含Nb奥氏体不锈钢中NbC的液态Pb-Bi共晶腐蚀行为及其对氧化层形成的影响 |
吴炀1,2, 谢昂1,2, 陈胜虎1( ), 姜海昌1, 戎利建1 |
1 中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 沈阳 110016 2 中国科学技术大学 材料科学与工程学院 沈阳 110016 |
|
Corrosion Behavior of NbC and Its Effect on Corrosion Layer Formation in Liquid Lead-Bismuth Eutectic of Nb-Containing Austenitic Stainless Steel |
WU Yang1,2, XIE Ang1,2, CHEN Shenghu1( ), JIANG Haichang1, RONG Lijian1 |
1 CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chines Academy of Sciences, Shenyang 110016, China 2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China |
引用本文:
吴炀, 谢昂, 陈胜虎, 姜海昌, 戎利建. 含Nb奥氏体不锈钢中NbC的液态Pb-Bi共晶腐蚀行为及其对氧化层形成的影响[J]. 金属学报, 2025, 61(2): 287-296.
Yang WU,
Ang XIE,
Shenghu CHEN,
Haichang JIANG,
Lijian RONG.
Corrosion Behavior of NbC and Its Effect on Corrosion Layer Formation in Liquid Lead-Bismuth Eutectic of Nb-Containing Austenitic Stainless Steel[J]. Acta Metall Sin, 2025, 61(2): 287-296.
1 |
Alemberti A, Smirnov V, Smith C F, et al. Overview of lead-cooled fast reactor activities [J]. Prog. Nucl. Energy, 2014, 77: 300
|
2 |
Yvon P, Carré F. Structural materials challenges for advanced reactor systems [J]. J. Nucl. Mater., 2009, 385: 217
|
3 |
Chen S H, Xie A, Lv X L, et al. Tailoring microstructure of austenitic stainless steel with improved performance for generation-IV fast reactor application: A review [J]. Crystals, 2023, 13: 268
|
4 |
Dalle F, Blat-Yrieix M, Dubiez-Le Goff S, et al. Conventional austenitic steels as out-of-core materials for Generation IV nuclear reactors [A]. Structural Materials for Generation IV Nuclear Reactors [M]. Amsterdam: Woodhead Publishing, 2017: 595
|
5 |
Wang Q Y, Chen S H, Rong L J. δ-ferrite formation and its effect on the mechanical properties of heavy-section AISI 316 stainless steel casting [J]. Metall. Mater. Trans., 2020, 51A: 2998
|
6 |
Wang Q Y, Chen S H, Lv X L, et al. Role of δ-ferrite in fatigue crack growth of AISI 316 austenitic stainless steel [J]. J. Mater. Sci. Technol., 2022, 114: 7
|
7 |
Lv X L, Chen S H, Wang Q Y, et al. Temperature dependence of fracture behavior and mechanical properties of AISI 316 austenitic stainless steel [J]. Metals, 2022, 12: 1421
|
8 |
Chen S H, Wang Q Y, Jiang H C, et al. Effect of δ-ferrite on hot deformation and recrystallization of 316KD austenitic stainless steel for sodium-cooled fast reactor application [J]. Acta Metall. Sin., 2024, 60: 367
|
8 |
陈胜虎, 王琪玉, 姜海昌 等. δ-铁素体对钠冷快堆用316KD奥氏体不锈钢热变形行为和动态再结晶的影响 [J]. 金属学报, 2024, 60: 367
doi: 10.11900/0412.1961.2022.00039
|
9 |
Aydoğdu G H, Aydinol M K. Determination of susceptibility to intergranular corrosion and electrochemical reactivation behaviour of AISI 316L type stainless steel [J]. Corros. Sci., 2006, 48: 3565
|
10 |
Padilha A F, Escriba D M, Materna-Morris E, et al. Precipitation in AISI 316L(N) during creep tests at 550 and 600 oC up to 10 years [J]. J. Nucl. Mater., 2007, 362: 132
|
11 |
Vach M, Kuníková T, Dománková M, et al. Evolution of secondary phases in austenitic stainless steels during long-term exposures at 600, 650 and 800 oC [J]. Mater. Charact., 2008, 59: 1792
|
12 |
Plaut R L, Herrera C, Escriba D M, et al. A short review on wrought austenitic stainless steels at high temperatures: Processing, microstructure, properties and performance [J]. Mater. Res., 2007, 10: 453
|
13 |
Perron A, Toffolon-Masclet C, Ledoux X, et al. Understanding sigma-phase precipitation in a stabilized austenitic stainless steel (316Nb) through complementary CALPHAD-based and experimental investigations [J]. Acta Mater., 2014, 79: 16
|
14 |
Carroll M C, Carroll L J. Fatigue and creep-fatigue deformation of an ultra-fine precipitate strengthened advanced austenitic alloy [J]. Mater. Sci. Eng., 2012, A556: 864
|
15 |
Taylor M, Ramirez J, Charit I, et al. Creep behavior of Alloy 709 at 700 oC [J]. Mater. Sci. Eng., 2019, A762: 138083
|
16 |
Uehira A, Mizuta S, Ukai S, et al. Irradiation creep of 11Cr-0.5 Mo-2W, V, Nb ferritic-martensitic, modified 316, and 15Cr-20Ni austenitic S.S. irradiated in FFTF to 103-206 dpa [J]. J. Nucl. Mater., 2000, 283-287: 396
|
17 |
Xie A, Chen S H, Wu Y, et al. Homogenization temperature dependent microstructural evolution and mechanical properties in a Nb-stabilized cast austenitic stainless steel [J]. Mater. Charact., 2022, 194: 112384
|
18 |
Proff C, Abolhassani S, Lemaignan C. Oxidation behaviour of zirconium alloys and their precipitates—A mechanistic study [J]. J. Nucl. Mater., 2013, 432: 222
|
19 |
Wang Z, Zhou B X, Wang B Y, et al. Second phase particles and their corrosion behavior of Zr-0.72Sn-0.32Fe-0.15Cr-0.97Nb alloy [J]. Acta Metall. Sin., 2016, 52: 78
doi: 10.11900/0412.1961.2015.00260
|
19 |
王 桢, 周邦新, 王波阳 等. Zr-0.72Sn-0.32Fe-0.15Cr-0.97Nb合金中的第二相及其腐蚀行为 [J]. 金属学报, 2016, 52: 78
|
20 |
Chen S H, Rong L J. Oxidation behavior of intermetallic phase and its contribution to the oxidation resistance in Fe-Cr-Zr ferritic alloy [J]. Metals, 2022, 12: 827
|
21 |
Wu X Q, Rong L J, Tan J B, et al. Research advance on liquid lead-bismuth eutectic corrosion resistant Si enhanced ferritic/martensitic and austenitic stainless steels [J]. Acta Metall. Sin., 2023, 59: 502
doi: 10.11900/0412.1961.2022.00531
|
21 |
吴欣强, 戎利建, 谭季波 等. 耐Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展 [J]. 金属学报, 2023, 59: 502
doi: 10.11900/0412.1961.2022.00531
|
22 |
Chen S H, Rong L J. Oxide scale formation on ultrafine-grained ferritic-martensitic steel during pre-oxidation and its effect on the corrosion performance in stagnant liquid Pb-Bi eutectic [J]. Acta Metall. Sin., 2021, 57: 989
|
22 |
陈胜虎, 戎利建. 超细晶铁素体-马氏体钢的高温氧化成膜特性及其对Pb-Bi腐蚀行为的影响 [J]. 金属学报, 2021, 57: 989
doi: 10.11900/0412.1961.2020.00451
|
23 |
Martinelli L, Balbaud-Célérier F, Terlain A, et al. Oxidation mechanism of a Fe-9Cr-1Mo steel by liquid Pb-Bi eutectic alloy (Part I) [J]. Corros. Sci., 2008, 50: 2523
|
24 |
Charalampopoulou E, Delville R, Verwerft M, et al. Transmission electron microscopy study of complex oxide scales on DIN 1.4970 steel exposed to liquid Pb-Bi eutectic [J]. Corros. Sci., 2019, 147: 22
doi: 10.1016/j.corsci.2018.10.018
|
25 |
Moulder J F, Stickle W F, Sobol P E, et al. Handbook of X-ray Photoelectron Spectroscopy [M]. 2nd Ed., Eden Prairie, Minnesota: Perkin-Elmer Corporation, 1992: 28
|
26 |
Martinelli L, Balbaud-Célérier F, Picard G, et al. Oxidation mechanism of a Fe-9Cr-1Mo steel by liquid Pb-Bi eutectic alloy (Part III) [J]. Corros. Sci., 2008, 50: 2549
|
27 |
Wang J, Lu S P, Rong L J, et al. Effect of silicon on the oxidation resistance of 9 wt.% Cr heat resistance steels in 550 oC lead-bismuth eutectic [J]. Corros. Sci., 2016, 111: 13
|
28 |
Hong J K, Park N K, Kim S J, et al. Microstructures of oxidized primary carbides on superalloy Inconel 718 [J]. Mater. Sci. Forum, 2005, 502: 249
|
29 |
Ye Z F, Wang P, Li D Z, et al. M23C6 precipitates induced inhomogeneous distribution of silicon in the oxide formed on a high-silicon ferritic/martensitic steel [J]. Scr. Mater., 2015, 97: 45
|
30 |
Li M S, Qian Y H, Xin L. Volume Ratio of an oxide to the metal [J]. Corros. Sci. Prot. Technol., 1999, 11: 284
|
30 |
李美栓, 钱余海, 辛 丽. 合金上氧化物的体积比的分析 [J]. 腐蚀科学与防护技术, 1999, 11: 284
|
31 |
Xu C H, Gao W. Pilling-Bedworth ratio for oxidation of alloys [J]. Mater. Res. Innov., 2000, 3: 231
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|