Please wait a minute...
金属学报  2025, Vol. 61 Issue (12): 1845-1857    DOI: 10.11900/0412.1961.2024.00204
  研究论文 本期目录 | 过刊浏览 |
增材制造难变形高温合金GH4975的裂纹形成及其愈合机制
叶献文, 姚志浩(), 王洪瑛, 王子成, 张砻耀, 董建新
北京科技大学 材料科学与工程学院 北京 100083
Crack Formation and Healing Mechanisms in Additively Manufactured Hard-Deformed Ni-Based Superalloy GH4975
YE Xianwen, YAO Zhihao(), WANG Hongying, WANG Zicheng, ZHANG Longyao, DONG Jianxin
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

叶献文, 姚志浩, 王洪瑛, 王子成, 张砻耀, 董建新. 增材制造难变形高温合金GH4975的裂纹形成及其愈合机制[J]. 金属学报, 2025, 61(12): 1845-1857.
Xianwen YE, Zhihao YAO, Hongying WANG, Zicheng WANG, Longyao ZHANG, Jianxin DONG. Crack Formation and Healing Mechanisms in Additively Manufactured Hard-Deformed Ni-Based Superalloy GH4975[J]. Acta Metall Sin, 2025, 61(12): 1845-1857.

全文: PDF(4252 KB)   HTML
摘要: 

难变形镍基高温合金GH4975具有高的裂纹敏感性,采用增材制造工艺成型时易出现裂纹。本工作采用加入TiC作为异质形核剂、热等静压和热压缩等方法研究了增材制造难变形高温合金GH4975裂纹愈合的方法及其机制。结果表明,添加纳米TiC颗粒后,GH4975合金的平均晶粒尺寸从41.9 μm降低至27.2 μm,晶粒明显细化,但裂纹并未得到有效消除。通过热等静压工艺可以消除部分裂纹,但宽度大于3 μm的微裂纹未得到有效消除。在1200 ℃、变形速率0.1 s-1和变形量30%的热压缩条件下,可基本消除打印态试样中心的裂纹,但已进行过热等静压处理的试样在热压缩时的裂纹愈合能力下降。裂纹愈合的机制是在外加压力下基体的塑性流动和Al元素向裂纹的扩散填充。

关键词 GH4975难变形高温合金增材制造裂纹愈合纳米TiC颗粒热等静压    
Abstract

Ni-based superalloys that are difficult to deform are highly susceptible to cracking during additive manufacturing. Despite their importance, limited research has been conducted on the additive manufacturing of GH4975 superalloy. To address the cracking issues associated with such superalloys, this study focuses on additively manufactured GH4975 superalloy to investigates various crack repair strategies. Experimental approaches, including the addition of TiC heterogeneous nucleating agents to the powder, hot isostatic pressing (HIP), and hot compression, were used to explore effective methods and underlying mechanisms for crack healing. The results show that the calculated mismatch of close-packed planes between TiC and the matrix is 6.0%, with an atomic mismatch of 0.4% in the close-packed direction. Following the addition of nano-TiC particles, the average grain diameter of the GH4975 superalloy decreased from 41.9 μm to 27.2 μm, indicating significant grain refinement; however, the cracks were not effectively eliminated. The HIP repair method further removed some cracks, but microcracks wider than 3 μm remained unhealed. The most effective crack elimination was achieved through hot compression at 1200 °C with a strain rate of 0.1 s-1 and 30% deformation, which nearly eliminated cracks at the center of the as-printed sample. However, the crack healing ability decreased when hot compression was applied to samples that had already undergone HIP treatment. The main mechanisms of crack healing were identified as matrix plastic flow under external pressure and the diffusion-driven crack filling by Al elements.

Key wordshard-deformed Ni-based superall GH4975    additive manufacturing    crack healing    nano TiC particle    hot isostatic pressing
收稿日期: 2024-06-14     
ZTFLH:  TG132.3  
基金资助:国家自然科学基金项目(52271087);国家自然科学基金项目(52471110)
通讯作者: 姚志浩,zhihaoyao@ustb.edu.cn,主要从事先进高温结构材料研究
Corresponding author: YAO Zhihao, professor, Tel: (010)62332884, E-mail: zhihaoyao@ustb.edu.cn
作者简介: 叶献文,男,1999年生,硕士
图1  TiC、GH4975及其混合粉末表面形貌的SEM像
图2  GH4975不同工艺参数下打印后样品的OM像
图3  GH4975和TiC-GH4975打印态试样裂纹形貌的SEM像
图4  GH4975和TiC-GH4975打印态试样晶粒形貌的EBSD像
图5  TiC-GH4975打印态试样热等静压处理前后裂纹形貌的SEM像和裂纹宽度统计结果
图6  TiC-GH4975打印态试样经热等静压处理前后显微组织的SEM像及EBSD像
图7  TiC-GH4975热等静压态试样经不同温度热压缩后不同区域截面形貌的SEM像
图8  TiC-GH4975打印态试样经不同温度热压缩后不同区域截面形貌的SEM像
图9  热等静压态和打印态TiC-GH4975试样经不同温度热压缩后显微组织的SEM像
Sample1160 oC1200 oC
HIPed283168
As-build306202
表1  1160和1200 ℃热压缩温度下热等静压态和打印态TiC-GH4975试样的峰值应力 (MPa)
图10  TiC-GH4975热等静压态和打印态试样经不同温度热压缩后中心裂纹愈合情况
图11  未愈合裂纹的SEM像和EDS面扫描元素分布与已愈合裂纹痕迹的SEM像和EDS点扫描成分分析
图12  热等静压过程中裂纹愈合过程示意图
[1] Mostafaei A, Ghiaasiaan R, Ho I T, et al. Additive manufacturing of nickel-based superalloys: A state-of-the-art review on process-structure-defect-property relationship [J]. Prog. Mater. Sci., 2023, 136: 101108
[2] Singh V K, Sahoo D, Amirthalingam M, et al. Dissolution of the laves phase and δ-precipitate formation mechanism in additively manufactured Inconel 718 during post printing heat treatments [J]. Addit. Manuf., 2024, 81: 104021
[3] Pleass C, Jothi S, Krishnan M. Grain boundary and triple junction characteristics analytics of additive manufactured Inconel 625 superalloy using selective laser melting [J]. Mater. Sci. Eng., 2023, A869: 144744
[4] Lim B, Chen H S, Chen Z B, et al. Microstructure-property gradients in Ni-based superalloy (Inconel 738) additively manufactured via electron beam powder bed fusion [J]. Addit. Manuf., 2021, 46: 102121
[5] Kumar B, Sahu S, Srinivasan D, et al. Influence of heat input on solidification cracking in additively manufactured CM247LC Ni-based superalloy [J]. Metall. Mater. Trans., 2023, 54A: 2394
[6] Li C, White R, Fang X Y, et al. Microstructure evolution characteristics of Inconel 625 alloy from selective laser melting to heat treatment [J]. Mater. Sci. Eng., 2017, A705: 20
[7] Amato K N, Gaytan S M, Murr L E, et al. Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting [J]. Acta Mater., 2012, 60: 2229
[8] Yu H, Liang J J, Bi Z N, et al. Computational design of novel Ni superalloys with low crack susceptibility for additive manufacturing [J]. Metall. Mater. Trans., 2022, 53A: 1945
[9] Xiang X M, Jiang H, Dong J X, et al. As-cast microstructure characteristic and homogenization of a newly developed hard-deformed Ni-based superalloy GH4975 [J]. Acta Metall. Sin., 2020, 56: 988
[9] 向雪梅, 江 河, 董建新 等. 难变形高温合金GH4975的铸态组织及均匀化 [J]. 金属学报, 2020, 56: 988
[10] van Belle L, Vansteenkiste G, Boyer J C. Investigation of residual stresses induced during the selective laser melting process [J]. Key Eng. Mater., 2013, 554-557: 1828
[11] Kontis P, Chauvet E, Peng Z R, et al. Atomic-scale grain boundary engineering to overcome hot-cracking in additively-manufactured superalloys [J]. Acta Mater., 2019, 177: 209
[12] Wang H, Zhang X, Wang G B, et al. Selective laser melting of the hard-to-weld IN738LC superalloy: Efforts to mitigate defects and the resultant microstructural and mechanical properties [J]. J. Alloys Compd., 2019, 807: 151662
[13] Catchpole-Smith S, Aboulkhair N, Parry L, et al. Fractal scan strategies for selective laser melting of ‘unweldable’ nickel superalloys [J]. Addit. Manuf., 2017, 15: 113
[14] Marchese G, Bassini E, Aversa A, et al. Microstructural evolution of post-processed Hastelloy X alloy fabricated by laser powder bed fusion [J]. Materials, 2019, 12: 486
[15] Tomus D, Rometsch P A, Heilmaier M, et al. Effect of minor alloying elements on crack-formation characteristics of Hastelloy-X manufactured by selective laser melting [J]. Addit. Manuf., 2017, 16: 65
[16] Engeli R, Etter T, Hövel S, et al. Processability of different IN738LC powder batches by selective laser melting [J]. J. Mater. Process. Technol., 2016, 229: 484
[17] Zhao X M, Lin X, Chen J, et al. The effect of hot isostatic pressing on crack healing, microstructure, mechanical properties of Rene88DT superalloy prepared by laser solid forming [J]. Mater. Sci. Eng., 2009, A504: 129
[18] Han Q Q, Mertens R, Montero-Sistiaga M L, et al. Laser powder bed fusion of Hastelloy X: Effects of hot isostatic pressing and the hot cracking mechanism [J]. Mater. Sci. Eng., 2018, A732: 228
[19] Vilanova M, Garciandia F, Sainz S, et al. The limit of hot isostatic pressing for healing cracks present in an additively manufactured nickel superalloy [J]. J. Mater. Process. Technol., 2022, 300: 117398
[20] Fan Z J, Li C, Yang H L, et al. Effects of TiC nanoparticle inoculation on the hot-tearing cracks and grain refinement of additively-manufactured AA2024 Al alloys [J]. J. Mater. Res. Technol., 2022, 19: 194
[21] Zhou W Z, Zhu G L, Wang R, et al. Inhibition of cracking by grain boundary modification in a non-weldable nickel-based superalloy processed by laser powder bed fusion [J]. Mater. Sci. Eng., 2020, A791: 139745
[22] Zhou Z P, Huang L, Shang Y J, et al. Causes analysis on cracks in nickel-based single crystal superalloy fabricated by laser powder deposition additive manufacturing [J]. Mater. Des., 2018, 160: 1238
[23] Prasad A, Yuan L, Lee P, et al. Towards understanding grain nucleation under additive manufacturing solidification conditions [J]. Acta Mater., 2020, 195: 392
[24] Zhou W Z, Tian Y S, Wei D Y, et al. Effects of heat treatments on the microstructure and tensile properties of IN738 superalloy with high carbon content fabricated via laser powder bed fusion [J]. J. Alloys Compd., 2023, 953: 170110
[25] Stjohn D H, Qian M, Easton M A, et al. The interdependence theory: The relationship between grain formation and nucleant selection [J]. Acta Mater., 2011, 59: 4907
[26] Zhang M X, Kelly P M. Edge-to-edge matching model for predicting orientation relationships and habit planes—The improvements [J]. Scr. Mater., 2005, 52: 963
[27] Li T T. Effects and mechanisms of in-situ nanocrystals in the melt on the solidification behavior, microstructure and mechanical properties of aluminum alloys [D]. Changchun: Jilin University, 2021
[27] 李涛涛. 熔体中原位纳米晶对铝合金凝固行为、组织和力学性能影响及机制 [D]. 长春: 吉林大学, 2021
[28] Martin J H, Yahata B D, Hundley J M, et al. 3D printing of high-strength aluminium alloys [J]. Nature, 2017, 549: 365
[29] Wei B, Liu Z M, Cao B, et al. Cracking inhibition of nano-TiC reinforced René 104 superalloy fabricated by selective laser melting [J]. J. Alloys Compd., 2021, 881: 160413
[30] Zheng X G, Shi Y N, Lou L H. Healing process of casting pores in a Ni-based superalloy by hot isostatic pressing [J]. J. Mater. Sci. Technol., 2015, 31: 1151
[1] 谭若涵, 宋永锋, 陈超, 李丹, 成庶, 李雄兵. 增材制造钛合金等效弹性张量的细观力学建模与实验研究[J]. 金属学报, 2025, 61(9): 1438-1448.
[2] 杨帆, 裴世超, 罗新蕊, 陈宇翔, 李宁宇, 常永勤. 6061铝合金搅拌摩擦增材制造显微组织演变及力学性能[J]. 金属学报, 2025, 61(8): 1129-1140.
[3] 黄科, 李新志, 方学伟, 卢秉恒. 镁合金电弧熔丝增材制造技术研究现状与展望[J]. 金属学报, 2025, 61(3): 397-419.
[4] 韩启飞, 狄兴隆, 郭跃岭, 叶水俊, 郑元翾, 刘长猛. 电弧熔丝增材制造Mg/Mg双金属的组织与力学性能[J]. 金属学报, 2025, 61(2): 211-225.
[5] 尚学文, 崔潇潇, 徐磊, 卢正冠. 粉末粒度对钛合金闭式叶轮成形的影响[J]. 金属学报, 2025, 61(2): 253-264.
[6] 刘瑞良, 刘泉利, 李富霖. 冷喷涂后处理技术及其研究进展[J]. 金属学报, 2025, 61(10): 1449-1468.
[7] 吴文伟, 向超, 张涛, 邹志航, 孙勇飞, 刘金鹏, 张涛, 韩恩厚. 热处理工艺对选区激光熔化成型18Ni300马氏体时效钢微观组织及力学性能的影响[J]. 金属学报, 2025, 61(10): 1515-1530.
[8] 于云鹤, 谢勇, 陈鹏, 董浩凯, 侯纪新, 夏志新. 316L不锈钢表面激光熔化沉积CoCrNiCu中熵合金的界面相容性[J]. 金属学报, 2024, 60(9): 1213-1228.
[9] 张星星, LUTZ Andreas, 甘为民, MAAWAD Emad, KRIELE Armin. 退火热处理对增材制造AlSi10Mg合金宏观和微观变形行为的影响[J]. 金属学报, 2024, 60(8): 1091-1099.
[10] 刘壮壮, 丁明路, 谢建新. 金属3D打印数字化制造研究进展[J]. 金属学报, 2024, 60(5): 569-584.
[11] 黎康杰, 孙泽羽, 何蓓, 田象军. 基于熔池原位冶金的电弧增材制造Al-Cu-Li合金显微组织与硬度[J]. 金属学报, 2024, 60(5): 661-669.
[12] 曾立, 王桂兰, 张海鸥, 翟文正, 张勇, 张明波. 电弧微铸锻复合增材制造GH4169D高温合金的显微组织与力学性能[J]. 金属学报, 2024, 60(5): 681-690.
[13] 孙徕博, 黄陆军, 黄瑞生, 徐锴, 武鹏博, 龙伟民, 姜风春, 方乃文. 超声冲击对增材制造组织改善及强化机理影响的研究进展[J]. 金属学报, 2024, 60(3): 273-286.
[14] 田晓生, 卢正冠, 徐磊, 吴杰, 杨锐. 粉末冶金Inconel 718合金的热等静压成形和原始颗粒边界的消除[J]. 金属学报, 2024, 60(11): 1487-1498.
[15] 蒋华臻, 彭爽, 胡琦芸, 王光义, 陈启生, 李正阳, 孙辉磊, 房佳汇钰. 激光熔化沉积制备316L不锈钢的电化学腐蚀及空化腐蚀性能[J]. 金属学报, 2024, 60(11): 1512-1530.