Please wait a minute...
金属学报  2024, Vol. 60 Issue (9): 1155-1164    DOI: 10.11900/0412.1961.2023.00166
  研究论文 本期目录 | 过刊浏览 |
冷却速率对锆合金氢化物析出的影响
公维佳1,2, 梁森茂1,2, 张敬翊3, 李时磊4, 孙勇5, 李中奎1,2(), 李金山1
1.西北工业大学 材料学院 西安 710072
2.西北工业大学 太仓长三角研究院清洁能源研究中心 太仓 215400
3.西北工业大学 伦敦玛丽女王大学工程学院 西安 710072
4.北京科技大学 新金属材料国家重点实验室 北京 100083
5.中国工程物理研究院 核物理与化学研究所 绵阳 621900
Effect of Cooling Rate on Hydride Precipitation in Zirconium Alloys
GONG Weijia1,2, LIANG Senmao1,2, ZHANG Jingyi3, LI Shilei4, SUN Yong5, LI Zhongkui1,2(), LI Jinshan1
1.School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
2.Clean Energy Research Center, Yangtze River Delta Research Institute of Northwestern Polytechnical University, Taicang 215400, China
3.Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi'an 710072, China
4.State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
5.Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China
引用本文:

公维佳, 梁森茂, 张敬翊, 李时磊, 孙勇, 李中奎, 李金山. 冷却速率对锆合金氢化物析出的影响[J]. 金属学报, 2024, 60(9): 1155-1164.
Weijia GONG, Senmao LIANG, Jingyi ZHANG, Shilei LI, Yong SUN, Zhongkui LI, Jinshan LI. Effect of Cooling Rate on Hydride Precipitation in Zirconium Alloys[J]. Acta Metall Sin, 2024, 60(9): 1155-1164.

全文: PDF(4181 KB)   HTML
摘要: 

氢化物是影响核燃料固有性能与核结构材料服役安全的关键问题,而冷却速率显著影响氢化物的宏观形貌和微观特性。本工作借助OM、BSE-SEM以及EBSD等表征手段,对不同冷却条件下析出的锆氢化物进行了系统研究。实验结果发现,fcc结构δ相是锆合金中形成的主要氢化物结构,其在锆合金板材轧向与横向平面内呈条状分布,随冷却速率提高,亚稳态面心四方(fct)结构γ氢化物数量明显增多。2种结构的氢化物在α-Zr母体晶粒内取向一致,与基体保持{0001}//{111}、<112¯0>//<110>取向关系。证实氢化物尖端的强应变能够诱导新的纳米氢化物优先在已有氢化物尖端位置形核、生长,然后通过氢化物堆垛、排列构成条状氢化物。此外,锆合金中Zr(Fe, Cr)2第二相粒子作为微区氢陷阱与形核位点,对氢化物条状形貌的形成具有促进作用。

关键词 锆合金氢化物冷却速率微观形貌析出应变    
Abstract

Zirconium alloys have been used as nuclear fuel claddings for decades, owing to their low thermal neutron absorption cross-section, good thermal conductivity, suitable mechanical properties, and excellent corrosion resistance. During in-reactor service, zirconium alloy cladding undergoes a corrosion reaction with the coolant and absorbs part of the hydrogen produced due to corrosion, resulting in the formation of brittle zirconium hydrides. Hydrides impose great risk to the mechanical integrity of the fuel claddings during reactor operation and even during storage and transportation of spent fuel rods. Hydride morphological features such as size, distribution, and growth direction are closely related to the cooling rate, which also affects the microstructural characteristics of hydrides, including nucleation sites, crystal structure, and precipitation strain. These factors further influence the mechanical properties and corrosion resistance of zirconium alloy cladding. Therefore, investigation of the influence of cooling rate on hydride precipitation is crucial to develop a theoretical study that can aid in the prevention of hydride embrittlement in nuclear fuel claddings. Herein, multiscale characterization techniques including OM, BSE-SEM, and EBSD were used to systematically investigate the morphology and microstructure of hydride precipitation under various cooling conditions in a Zr-4 plate material. The fcc-structured δ phase, well aligned in the plane of rolling and transverse directions, is the predominant hydride formed in zirconium alloys was found. With rapid cooling rates, the thickness and spacing of the hydrides decreased, forming finely dispersed plate-like distribution morphology. Intragranular hydrides and metastable fcc-structured γ-hydrides increased in number density with rapid cooling rate. The two types of hydrides exhibited the same crystallographic orientation while sharing one α-parent grain, both holding an orientation relationship of {0001}//{111} and <112¯0>//<110> with the α-Zr matrix, independent of the cooling rate. Prior to complete transformation into the δ phase, the γ-hydride is proposed as a transitional phase during the initial stage of hydride precipitation, given that the γ-phase requires a lower hydrogen concentration for the phase transformation and exhibits lower precipitation strain than the δ phase. {111}<112¯> twinning structures were identified within the hydrides, which are expected to favor alleviating hydride precipitation strains. High angular resolution EBSD revealed that strong tensile strains induced by the volume expansion of hydride precipitation are present in the vicinity of the hydride tip, which might act as the preferential nucleation site for new hydride precipitation, promoting the formation of hydride plate morphology. Furthermore, nanohydrides were identified precipitating at the boundary of Zr(Fe, Cr)2 second-phase particles, which is expected to play a role in the morphologic development of plate hydrides.

Key wordszirconium alloy    hydride    cooling rate    microstructure    precipitation strain
收稿日期: 2023-04-13     
ZTFLH:  TG146.4  
基金资助:国家自然科学基金项目(U2230124,12005170,U2067217);国防科技工业局乏燃料后处理科研专项项目
通讯作者: 李中奎,lizhangyi@nwpu.edu.cn,主要从事难熔合金的研究
Corresponding author: LI Zhongkui, professor, Tel: 13991818960, E-mail: lizhangyi@nwpu.edu.cn
作者简介: 公维佳,男,1986年生,副教授
图1  充氢和均匀化退火后Zr-4板材微观组织的EBSD结果
图2  不同冷却条件下Zr-4合金中氢化物的OM像
图3  不同冷却条件下Zr-4合金中氢化物的高倍OM像
图4  不同冷却条件下Zr-4合金中氢化物的BSE-SEM像
图5  不同冷却条件下Zr-4合金中氢化物的相分布图
图6  不同冷却条件下Zr-4合金中氢化物的反极图
图7  不同冷却条件下Zr-4合金中Zr晶粒与氢化物的极图
图8  0.5℃/min冷却条件下Zr-4合金内的Zr(Fe, Cr)2第二相粒子及其周围氢化物相图、反极图和BSE-SEM像
图9  锆合金中氢化物与氢化物孪晶形成示意图
图10  0.5℃/min冷却条件下Zr-4合金内氢化物析出的应力与应变场
1 Bair J, Asle Zaeem M, Tonks M. A review on hydride precipitation in zirconium alloys [J]. J. Nucl. Mater., 2015, 466: 12
2 Lee J M, Hong S I. Design and mechanical characterization of a Zr-Nb-O-P alloy [J]. Mater. Des., 2011, 32: 4270
3 Suman S, Khan M K, Pathak M, et al. Hydrogen in Zircaloy: Mechanism and its impacts [J]. Int. J. Hydrogen Energy, 2015, 40: 5976
4 Courty O, Motta A T, Hales J D. Modeling and simulation of hydrogen behavior in Zircaloy-4 fuel cladding [J]. J. Nucl. Mater., 2014, 452: 311
5 Stafford D S. Multidimensional simulations of hydrides during fuel rod lifecycle [J]. J. Nucl. Mater., 2015, 466: 362
6 Gong W J, Trtik P, Valance S, et al. Hydrogen diffusion under stress in Zircaloy: High-resolution neutron radiography and finite element modeling [J]. J. Nucl. Mater., 2018, 508: 459
7 Lacroix E, Motta A T, Almer J D. Experimental determination of zirconium hydride precipitation and dissolution in zirconium alloy [J]. J. Nucl. Mater., 2018, 509: 162
8 Karimi M, Shayegh Boroujeny B, Adelkhani H. The effect of zirconium hydride on the corrosion and mechanical behavior of zirconium base metal: Experimental and simulation studies [J]. Appl. Surf. Sci. Adv., 2021, 6: 100166
9 Bradbrook J S, Lorimer G W, Ridley N. The precipitation of zirconium hydride in zirconium and Zircaloy-2 [J]. J. Nucl. Mater., 1972, 42: 142
10 Lanzani L, Ruch M. Comments on the stability of zirconium hydride phases in Zircaloy [J]. J. Nucl. Mater., 2004, 324: 165
11 Barrow A T W, Korinek A, Daymond M R. Evaluating zirconium-zirconium hydride interfacial strains by nano-beam electron diffraction [J]. J. Nucl. Mater., 2013, 432: 366
12 Barraclough K G, Beevers C J. Some observations on the phase transformations in zirconium hydrides [J]. J. Nucl. Mater., 1970, 34: 125
13 Katz O M. Tetragonal hydride in low hydrogen content zircaloy [J]. J. Nucl. Mater., 1970, 36: 335
14 Steuwer A, Santisteban J R, Preuss M, et al. Evidence of stress-induced hydrogen ordering in zirconium hydrides [J]. Acta Mater., 2009, 57: 145
15 Nath B, Lorimer G W, Ridley N. Effect of hydrogen concentration and cooling rate on hydride precipitation in α-zirconium [J]. J. Nucl. Mater., 1975, 58: 153
16 Long F, Luo Y, Badr N N, et al. Identifying the true structure and origin of the water-quench induced hydride phase in Zr-2.5Nb alloy [J]. Acta Mater., 2021, 221: 117369
17 Choi Y, Lee J W, Lee Y W, et al. Hydride formation by high temperature cathodic hydrogen charging method and its effect on the corrosion behavior of Zircaloy-4 tubes in acid solution [J]. J. Nucl. Mater., 1998, 256: 124
18 Kim S D, Rhyim Y, Kim J S, et al. Characterization of zirconium hydrides in Zircaloy-4 cladding with respect to cooling rate [J]. J. Nucl. Mater., 2015, 465: 731
19 Sidhu S S, Murthy N S S, Campos F P, et al. Neutron and X-ray diffraction studies on nonstoichiometric metal hydrides [R]. Argonne, IL: Argonne National Laboratory, 1962
20 Zhu X Y, Lin D Y, Fang J, et al. Structure and thermodynamic properties of zirconium hydrides by structure search method and first principles calculations [J]. Comput. Mater. Sci., 2018, 150: 77
21 Shiman O V, Daymond M R. Phase transformation and microstructural changes during the hydriding and aging processes in dual phase Zr alloy [J]. Mater. Chem. Phys., 2019, 231: 48
22 Kiran Kumar N A P, Szpunar J A. EBSD studies on microstructure and crystallographic orientation of δ-hydrides in Zircaloy-4, Zr-1% Nb and Zr-2.5% Nb [J]. Mater. Sci. Eng., 2011, A528: 6366
23 Kiran Kumar N A P, Szpunar J A, He Z. Preferential precipitation of hydrides in textured Zircaloy-4 sheets [J]. J. Nucl. Mater., 2010, 403: 101
24 Wang S Y, Giuliani F, Britton T B. Microstructure and formation mechanisms of δ-hydrides in variable grain size Zircaloy-4 studied by electron backscatter diffraction [J]. Acta Mater., 2019, 169: 76
25 Westlake D G. The habit planes of zirconium hydride in zirconium and zircaloy [J]. J. Nucl. Mater., 1968, 26: 208
26 Roy C, Jacques J G. {10 1 ¯ 7} hydride habit planes in single crystal zirconium [J]. J. Nucl. Mater., 1969, 31: 233
27 Jones C, Tuli V, Shah Z, et al. Evidence of hydrogen trapping at second phase particles in zirconium alloys [J]. Sci. Rep., 2021, 11: 4370
doi: 10.1038/s41598-021-83859-w pmid: 33623066
28 Carpenter G J C. The precipitation of γ-zirconium hydride in zirconium [J]. Acta Metall., 1978, 26: 1225
29 Carpenter G J C. The dilatational misfit of zirconium hydrides precipitated in zirconium [J]. J. Nucl. Mater., 1973, 48: 264
30 Li J H, Wang Z Y, Wu H, et al. Microstructural and crystallographic analysis of hydride reorientation in a zirconium alloy cladding tube [J]. J. Nucl. Mater., 2020, 537: 152232
31 Perovic V, Weatherly G C, Simpson C J. Hydride precipitation in α/β zirconium alloys [J]. Acta Metall., 1983, 31: 1381
32 Perovic V, Purdy G R, Brown L M. Autocatalytic nucleation and elastic stabilization of linear arrays of plate-shaped precipitates [J]. Acta Metall., 1981, 29: 889
[1] 王金鑫, 姚美意, 林雨晨, 陈刘涛, 高长源, 徐诗彤, 胡丽娟, 谢耀平, 周邦新. Zr-1Nb-xFe合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2024, 60(5): 670-680.
[2] 黄建松, 裴文, 徐诗彤, 白勇, 姚美意, 胡丽娟, 谢耀平, 周邦新. Nb锆合金在含氧蒸汽中耐腐蚀性能恶化的机理[J]. 金属学报, 2024, 60(4): 509-521.
[3] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[4] 廖京京, 张伟, 张君松, 吴军, 杨忠波, 彭倩, 邱绍宇. Zr-Sn-Nb-Fe-V合金在过热蒸汽中的周期性钝化-转折行为[J]. 金属学报, 2023, 59(2): 289-296.
[5] 张月鑫, 王举金, 杨文, 张立峰. 冷却速率对管线钢中非金属夹杂物成分演变的影响[J]. 金属学报, 2023, 59(12): 1603-1612.
[6] 李闪闪, 陈云, 巩桐兆, 陈星秋, 傅排先, 李殿中. 冷速对高碳铬轴承钢液析碳化物凝固析出机制的影响[J]. 金属学报, 2022, 58(8): 1024-1034.
[7] 姚美意,张兴旺,侯可可,张金龙,胡鹏飞,彭剑超,周邦新. Zr-0.75Sn-0.35Fe-0.15Cr合金在250 ℃去离子水中的初期腐蚀行为[J]. 金属学报, 2020, 56(2): 221-230.
[8] 王希,刘仁慈,曹如心,贾清,崔玉友,杨锐. 冷却速率对β凝固γ-TiAl合金硼化物和室温拉伸性能的影响[J]. 金属学报, 2020, 56(2): 203-211.
[9] 李亚强, 刘建华, 邓振强, 仇圣桃, 张佩, 郑桂芸. 15CrMoG钢包晶凝固特征与机制[J]. 金属学报, 2020, 56(10): 1335-1342.
[10] 姚美意, 林雨晨, 侯可可, 梁雪, 胡鹏飞, 张金龙, 周邦新. Sn对锆合金在280 LiOH水溶液中初期腐蚀行为的影响[J]. 金属学报, 2019, 55(12): 1551-1560.
[11] 郭军力, 文光华, 符姣姣, 唐萍, 侯自兵, 谷少鹏. 冷却速率对包晶钢凝固过程中包晶转变收缩的影响[J]. 金属学报, 2019, 55(10): 1311-1318.
[12] 张可, 李昭东, 隋凤利, 朱正海, 章小峰, 孙新军, 黄贞益, 雍岐龙. 冷却速率对Ti-V-Mo复合微合金钢组织转变及力学性能的影响[J]. 金属学报, 2018, 54(1): 31-38.
[13] 谷倩倩, 阮莹, 朱海哲, 闫娜. 冷却速率对急冷Fe-Al-Nb三元合金凝固组织形成的影响[J]. 金属学报, 2017, 53(6): 641-647.
[14] 胡小锋,杜瑜宾,闫德胜,戎利建. Cu的析出及其对FeCrMoCu合金阻尼性能和力学性能的影响[J]. 金属学报, 2017, 53(5): 601-608.
[15] 陈兵,高长源,黄娇,毛亚婧,姚美意,张金龙,周邦新,李强. β-(Nb, Zr)第二相合金在360 ℃去离子水中的腐蚀行为[J]. 金属学报, 2017, 53(4): 447-454.