|
|
熔模铸件尺寸控制的数字孪生建模关键技术与应用 |
官邦1, 汪东红1,2( ), 马洪波3, 疏达1,2( ), 丁正一1, 崔加裕1, 孙宝德1,2 |
1 上海交通大学 材料科学与工程学院 上海市先进高温材料及其精密成形重点实验室 上海 200240 2 上海交通大学 金属基复合材料国家重点实验室 上海 200240 3 西安电子科技大学 机电工程学院 西安 710126 |
|
Key Technology and Application of Digital Twin Modeling for Deformation Control of Investment Casting |
GUAN Bang1, WANG Donghong1,2( ), MA Hongbo3, SHU Da1,2( ), DING Zhengyi1, CUI Jiayu1, SUN Baode1,2 |
1 Shanghai Key Lab of Advanced High-Temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China 2 State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China 3 School of Electro-Mechanical Engineering, Xidian University, Xi'an 710126, China |
引用本文:
官邦, 汪东红, 马洪波, 疏达, 丁正一, 崔加裕, 孙宝德. 熔模铸件尺寸控制的数字孪生建模关键技术与应用[J]. 金属学报, 2024, 60(4): 548-558.
Bang GUAN,
Donghong WANG,
Hongbo MA,
Da SHU,
Zhengyi DING,
Jiayu CUI,
Baode SUN.
Key Technology and Application of Digital Twin Modeling for Deformation Control of Investment Casting[J]. Acta Metall Sin, 2024, 60(4): 548-558.
1 |
Sun B D, Wang J, Shu D. Precision Forming Technology of Large Superalloy Castings for Aircraft Engines[M]. Singapore: Springer, 2021: 1
|
2 |
Galles D, Beckermann C. Simulation of distortions and pattern allowances for a production steel casting[A]. Proceedings of the 69th SFSA Technical and Operating Conference[C]. Steel Founders' Society of America, Chicago, IL, 2015
|
3 |
Motoyama Y, Takahashi H, Inoue Y, et al. Development of a device for dynamical measurement of the load on casting and the contraction of the casting in a sand mold during cooling[J]. J. Mater. Process. Technol., 2012, 212: 1399
doi: 10.1016/j.jmatprotec.2012.02.007
|
4 |
Galles D, Beckermann C. In situ measurement and prediction of stresses and strains during casting of steel[J]. Metall. Mater. Trans., 2016, 47A: 811
|
5 |
Pradyumna R, Sridhar S, Satyanarayana A, et al. Wax patterns for integrally cast rotors/stators of aeroengine gas turbines[J]. Mater. Today: Proc., 2015, 2: 1714
|
6 |
Duan C P, Tong J, Lu L, et al. Improving the performance of 3D shape measurement of moving objects by fringe projection and data fusion[J]. IEEE Access, 2021, 9: 34682
doi: 10.1109/Access.6287639
|
7 |
Wang R X, Law A C, Garcia D, et al. Development of structured light 3D-scanner with high spatial resolution and its applications for additive manufacturing quality assurance[J]. Int. J. Adv. Manuf. Technol., 2021, 117: 845
doi: 10.1007/s00170-021-07780-2
|
8 |
Haleem A, Javaid M, Goyal A, et al. Redesign of car body by reverse engineering technique using steinbichler 3D scanner and projet 3D printer[J]. J. Ind. Integr. Manag., 2022, 7: 171
|
9 |
He W T, Zhong K, Li Z W, et al. Accurate calibration method for blade 3D shape metrology system integrated by fringe projection profilometry and conoscopic holography[J]. Opt. Lasers Eng., 2018, 110: 253
doi: 10.1016/j.optlaseng.2018.06.012
|
10 |
Zhao D Y, Yang Z H, Yang G X, et al. Dimension control of X-type heavy duty gas turbine solid blade in investment casting process[J]. Spec. Cast. Nonferrous Alloys, 2020, 40: 1265
|
10 |
赵代银, 杨照宏, 杨功显 等. 某型重型燃机实心动叶片的精密铸造过程尺寸控制[J]. 特种铸造及有色合金, 2020, 40: 1265
doi: 10.15980/j.tzzz.2020.11.020
|
11 |
Galles D, Lu J, Beckermann C. Determination of pattern allowances for a steel casting using an inverse elastoplastic deformation analysis[J]. IOP Conf. Ser.: Mater. Sci. Eng., 2019, 529: 012077
|
12 |
Galles D, Lu J, Beckermann C. Determination of pattern allowances for steel castings using the finite element inverse deformation analysis[J]. Int. J. Cast Met. Res., 2019, 32: 123
doi: 10.1080/13640461.2018.1558562
|
13 |
Dong Y W, Zhang D H, Bu K, et al. Geometric parameter-based optimization of the die profile for the investment casting of aerofoil-shaped turbine blades[J]. Int. J. Adv. Manuf. Technol., 2011, 57: 1245
doi: 10.1007/s00170-011-3681-z
|
14 |
Zhang D H, Jiang R S, Li J L, et al. Cavity optimization for investment casting die of turbine blade based on reverse engineering[J]. Int. J. Adv. Manuf. Technol., 2010, 48: 839
doi: 10.1007/s00170-009-2343-x
|
15 |
Bu K, Wang H, Zhou T, et al. Method of virtual mold-repair for hollow turbine blades[J]. Acta Aeronaut. Astronaut. Sin., 2011, 32: 538
|
15 |
卜 昆, 王 虹, 周 桐 等. 精铸空心涡轮叶片模具虚拟修模方法[J]. 航空学报, 2011, 32: 538
|
16 |
Bu K, Zhang Y L, Yu Q, et al. Research development on shrinkage fraction distribution of investment castings[J]. Aeronaut. Manuf. Technol., 2019, 62(20): 37
|
16 |
卜 昆, 张雅莉, 于 茜 等. 精铸件收缩率分布规律研究进展[J]. 航空制造技术, 2019, 62(20): 37
|
17 |
Li L Z, Wang J C, Han Y Z, et al. Displacement transfer with the mesh deformation method in multidisciplinary optimization of turbine blades[J]. J. Aerosp. Power, 2007, 22: 2101
|
17 |
李立州, 王婧超, 韩永志 等. 基于网格变形技术的涡轮叶片变形传递[J]. 航空动力学报, 2007, 22: 2101
|
18 |
Zhang M, Tao F, Huang B Q, et al. Digital twin data: Methods and key technologies[J]. Digital Twin, 2022, 1: 2
doi: 10.12688/digitaltwin
|
19 |
Yu J P, Wang D H, Li D Y, et al. Engineering computing and data-driven for gating system design in investment casting[J]. Int. J. Adv. Manuf. Technol., 2020, 111: 829
doi: 10.1007/s00170-020-06143-7
|
20 |
Ebrahimi A, Fritsching U, Heuser M, et al. A digital twin approach to predict and compensate distortion in a high pressure die casting (HPDC) process chain[J]. Procedia Manuf., 2020, 52: 144
|
21 |
Chen G Q, Zhu J L, Zhao Y H, et al. Digital twin modeling for temperature field during friction stir welding[J]. J. Manuf. Process., 2021, 64: 898
doi: 10.1016/j.jmapro.2021.01.042
|
22 |
Zhang M, Tao F, Huang B Q, et al. A physical model and data-driven hybrid prediction method towards quality assurance for composite components[J]. CIRP Ann., 2021, 70: 115
doi: 10.1016/j.cirp.2021.04.062
|
23 |
Tao F, Liu W R, Zhang M, et al. Five-dimension digital twin model and its ten applications[J]. Comput. Integr. Manuf. Syst., 2019, 25: 1
doi: 10.13196/j.cims.2019.01.001
|
23 |
陶 飞, 刘蔚然, 张 萌 等. 数字孪生五维模型及十大领域应用[J]. 计算机集成制造系统, 2019, 25: 1
|
24 |
Wang D H, Dong A P, Zhu G L, et al. The propagation and accumulation of dimensional shrinkage for ring-to-ring structure in investment casting[J]. Int. J. Adv. Manuf. Technol., 2018, 96: 623
doi: 10.1007/s00170-018-1631-8
|
25 |
Yu J P, Wang D H, Li D Y, et al. Process parameter effects on solidification behavior of the superalloy during investment casting[J]. Mater. Manuf. Process., 2019, 34: 1726
doi: 10.1080/10426914.2019.1666989
|
26 |
Wang D H, Sun F, Shu D, et al. Data-driven design of cast nickel-based superalloy and precision forming of complex castings[J]. Acta Metall. Sin., 2022, 58: 89
doi: 10.11900/0412.1961.2021.00355
|
26 |
汪东红, 孙 锋, 疏 达 等. 数据驱动镍基铸造高温合金设计及复杂铸件精确成形[J]. 金属学报, 2022, 58: 89
doi: 10.11900/0412.1961.2021.00355
|
27 |
Rajendra Y D, Mehrotra S C, Kale K V, et al. Evaluation of partially overlapping 3D point cloud's registration by using ICP variant and CloudCompare[J]. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., 2014, XL-8: 891
|
28 |
Chen G D, Han X, Liu G P. A multi-objective optimization method based on the approximate model manaement[J]. Eng. Mech., 2010, 27(5): 205
|
28 |
陈国栋, 韩 旭, 刘桂萍. 一种基于近似模型管理的多目标优化方法[J]. 工程力学, 2010, 27(5): 205
|
29 |
Zhao W, Fan F, Wang W. Non-linear partial least squares response surface method for structural reliability analysis[J]. Reliab. Eng. Syst. Saf., 2017, 161: 69
doi: 10.1016/j.ress.2017.01.004
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|