Please wait a minute...
金属学报  2024, Vol. 60 Issue (4): 548-558    DOI: 10.11900/0412.1961.2022.00263
  研究论文 本期目录 | 过刊浏览 |
熔模铸件尺寸控制的数字孪生建模关键技术与应用
官邦1, 汪东红1,2(), 马洪波3, 疏达1,2(), 丁正一1, 崔加裕1, 孙宝德1,2
1 上海交通大学 材料科学与工程学院 上海市先进高温材料及其精密成形重点实验室 上海 200240
2 上海交通大学 金属基复合材料国家重点实验室 上海 200240
3 西安电子科技大学 机电工程学院 西安 710126
Key Technology and Application of Digital Twin Modeling for Deformation Control of Investment Casting
GUAN Bang1, WANG Donghong1,2(), MA Hongbo3, SHU Da1,2(), DING Zhengyi1, CUI Jiayu1, SUN Baode1,2
1 Shanghai Key Lab of Advanced High-Temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2 State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
3 School of Electro-Mechanical Engineering, Xidian University, Xi'an 710126, China
引用本文:

官邦, 汪东红, 马洪波, 疏达, 丁正一, 崔加裕, 孙宝德. 熔模铸件尺寸控制的数字孪生建模关键技术与应用[J]. 金属学报, 2024, 60(4): 548-558.
Bang GUAN, Donghong WANG, Hongbo MA, Da SHU, Zhengyi DING, Jiayu CUI, Baode SUN. Key Technology and Application of Digital Twin Modeling for Deformation Control of Investment Casting[J]. Acta Metall Sin, 2024, 60(4): 548-558.

全文: PDF(2811 KB)   HTML
摘要: 

熔模铸造工艺流程长、工序多,铸件成型过程孤岛控制,存在尺寸超差问题。本工作基于节点法向量和最近邻点,提出熔模铸造工艺全节点位移传递的计算方法,解决熔模铸件成型多流程的数据孤岛问题。研究蜡模注射成型和铸件凝固过程工艺参数-尺寸偏差的关系,为数字孪生建模提供数据模型。对环套环特征件建立铸件模具反变形设计和铸件多流程下工艺优化的数字孪生应用。该数字孪生模型应用于设计阶段,反变形设计出模具内腔的三维几何模型。模拟结果表明,铸件所有节点位移偏差在0.04 mm以下。应用于流程之间的工艺控制,根据前一工序下尺寸偏差,进行后续工艺优化调控。

关键词 熔模铸造尺寸传递反变形设计数字孪生智能铸造    
Abstract

Investment casting processes are controlled separately for its complex casting system, resulting in the dimensional out of tolerance. A calculation method for node displacement transfer is proposed based on the node normal vector and the nearest neighbor points in investment casting; the relationship between injection parameters, dimensional deviation in injected wax pattern, and casting solidification is studied, which provides a data model for digital twin. The digital twin is applied to the antideformation design and process optimization under a multiprocess for ring-to-ring casting. In the design stage, the geometric model of the mold cavity is designed via reverse deformation, and the error between the simulation results of the casting after the antideformation design and the target geometric is < 0.04 mm. In the casting, the optimal control of the subsequent process is performed according to the dimensional deviation of the previous process.

Key wordsinvestment casting    dimension transfer    antideformation design    digital twin    intelligent casting
收稿日期: 2022-05-31     
ZTFLH:  TG146.3  
基金资助:国家重点研发计划项目(2022YFB3706800);国家重点研发计划项目(2020YFB1710100);国家科技重大专项项目(2017-Ⅶ-0008-0102);国家科技重大专项项目(J2019-VI-0004-0117);国家自然科学基金项目(51821001);国家自然科学基金项目(52090042);浙江省重点研发计划项目(2020C01056);浙江省重点研发计划项目(2021C01157);浙江省重点研发计划项目(2022C01147)
通讯作者: 汪东红,wangdh2009@sjtu.edu.cn,主要从事数字化智能化精密铸造研究;
疏 达,dshu@sjtu.edu.cn,主要从事液态金属加工研究
Corresponding author: WANG Donghong, associate professor, Tel:(021)54748974, E-mail: wangdh2009@sjtu.edu.cn;
SHU Da, professor, Tel: (021)54748974, E-mail: dshu@sjtu.edu.cn
作者简介: 官 邦,男,1995年生,博士生
图1  铸件尺寸控制数字孪生建模仿真基本框架
图2  节点位移偏差计算示意图
图3  1 mm网格划分节点距离误差
Boundary

X1

MPa

X2

cm3·s-1

X3

oC

X4

oC

X5

oC

X6

W·m-2·oC-1

Upper0.53062145090050
Lower53007016001100200
表1  设计变量及其区间
图4  铸件几何模型
图5  蜡模变形和铸件变形模拟结果
图6  位移场和统计分布直方图表示位移的传递过程
图7  内环所有节点
图8  蜡模和铸件不同高度的尺寸偏差
图9  基于几何迭代反变形设计的铸件总位移分布
图10  铸件与蜡模之间不同高度的尺寸偏差
图11  CAD模型、蜡模和铸件的点云
图12  不同几何模型之间节点位移场云图和统计分布直方图
图13  Y方向和Z方向平均位移向量分量随叶片截面高度的变化曲线
1 Sun B D, Wang J, Shu D. Precision Forming Technology of Large Superalloy Castings for Aircraft Engines[M]. Singapore: Springer, 2021: 1
2 Galles D, Beckermann C. Simulation of distortions and pattern allowances for a production steel casting[A]. Proceedings of the 69th SFSA Technical and Operating Conference[C]. Steel Founders' Society of America, Chicago, IL, 2015
3 Motoyama Y, Takahashi H, Inoue Y, et al. Development of a device for dynamical measurement of the load on casting and the contraction of the casting in a sand mold during cooling[J]. J. Mater. Process. Technol., 2012, 212: 1399
doi: 10.1016/j.jmatprotec.2012.02.007
4 Galles D, Beckermann C. In situ measurement and prediction of stresses and strains during casting of steel[J]. Metall. Mater. Trans., 2016, 47A: 811
5 Pradyumna R, Sridhar S, Satyanarayana A, et al. Wax patterns for integrally cast rotors/stators of aeroengine gas turbines[J]. Mater. Today: Proc., 2015, 2: 1714
6 Duan C P, Tong J, Lu L, et al. Improving the performance of 3D shape measurement of moving objects by fringe projection and data fusion[J]. IEEE Access, 2021, 9: 34682
doi: 10.1109/Access.6287639
7 Wang R X, Law A C, Garcia D, et al. Development of structured light 3D-scanner with high spatial resolution and its applications for additive manufacturing quality assurance[J]. Int. J. Adv. Manuf. Technol., 2021, 117: 845
doi: 10.1007/s00170-021-07780-2
8 Haleem A, Javaid M, Goyal A, et al. Redesign of car body by reverse engineering technique using steinbichler 3D scanner and projet 3D printer[J]. J. Ind. Integr. Manag., 2022, 7: 171
9 He W T, Zhong K, Li Z W, et al. Accurate calibration method for blade 3D shape metrology system integrated by fringe projection profilometry and conoscopic holography[J]. Opt. Lasers Eng., 2018, 110: 253
doi: 10.1016/j.optlaseng.2018.06.012
10 Zhao D Y, Yang Z H, Yang G X, et al. Dimension control of X-type heavy duty gas turbine solid blade in investment casting process[J]. Spec. Cast. Nonferrous Alloys, 2020, 40: 1265
10 赵代银, 杨照宏, 杨功显 等. 某型重型燃机实心动叶片的精密铸造过程尺寸控制[J]. 特种铸造及有色合金, 2020, 40: 1265
doi: 10.15980/j.tzzz.2020.11.020
11 Galles D, Lu J, Beckermann C. Determination of pattern allowances for a steel casting using an inverse elastoplastic deformation analysis[J]. IOP Conf. Ser.: Mater. Sci. Eng., 2019, 529: 012077
12 Galles D, Lu J, Beckermann C. Determination of pattern allowances for steel castings using the finite element inverse deformation analysis[J]. Int. J. Cast Met. Res., 2019, 32: 123
doi: 10.1080/13640461.2018.1558562
13 Dong Y W, Zhang D H, Bu K, et al. Geometric parameter-based optimization of the die profile for the investment casting of aerofoil-shaped turbine blades[J]. Int. J. Adv. Manuf. Technol., 2011, 57: 1245
doi: 10.1007/s00170-011-3681-z
14 Zhang D H, Jiang R S, Li J L, et al. Cavity optimization for investment casting die of turbine blade based on reverse engineering[J]. Int. J. Adv. Manuf. Technol., 2010, 48: 839
doi: 10.1007/s00170-009-2343-x
15 Bu K, Wang H, Zhou T, et al. Method of virtual mold-repair for hollow turbine blades[J]. Acta Aeronaut. Astronaut. Sin., 2011, 32: 538
15 卜 昆, 王 虹, 周 桐 等. 精铸空心涡轮叶片模具虚拟修模方法[J]. 航空学报, 2011, 32: 538
16 Bu K, Zhang Y L, Yu Q, et al. Research development on shrinkage fraction distribution of investment castings[J]. Aeronaut. Manuf. Technol., 2019, 62(20): 37
16 卜 昆, 张雅莉, 于 茜 等. 精铸件收缩率分布规律研究进展[J]. 航空制造技术, 2019, 62(20): 37
17 Li L Z, Wang J C, Han Y Z, et al. Displacement transfer with the mesh deformation method in multidisciplinary optimization of turbine blades[J]. J. Aerosp. Power, 2007, 22: 2101
17 李立州, 王婧超, 韩永志 等. 基于网格变形技术的涡轮叶片变形传递[J]. 航空动力学报, 2007, 22: 2101
18 Zhang M, Tao F, Huang B Q, et al. Digital twin data: Methods and key technologies[J]. Digital Twin, 2022, 1: 2
doi: 10.12688/digitaltwin
19 Yu J P, Wang D H, Li D Y, et al. Engineering computing and data-driven for gating system design in investment casting[J]. Int. J. Adv. Manuf. Technol., 2020, 111: 829
doi: 10.1007/s00170-020-06143-7
20 Ebrahimi A, Fritsching U, Heuser M, et al. A digital twin approach to predict and compensate distortion in a high pressure die casting (HPDC) process chain[J]. Procedia Manuf., 2020, 52: 144
21 Chen G Q, Zhu J L, Zhao Y H, et al. Digital twin modeling for temperature field during friction stir welding[J]. J. Manuf. Process., 2021, 64: 898
doi: 10.1016/j.jmapro.2021.01.042
22 Zhang M, Tao F, Huang B Q, et al. A physical model and data-driven hybrid prediction method towards quality assurance for composite components[J]. CIRP Ann., 2021, 70: 115
doi: 10.1016/j.cirp.2021.04.062
23 Tao F, Liu W R, Zhang M, et al. Five-dimension digital twin model and its ten applications[J]. Comput. Integr. Manuf. Syst., 2019, 25: 1
doi: 10.13196/j.cims.2019.01.001
23 陶 飞, 刘蔚然, 张 萌 等. 数字孪生五维模型及十大领域应用[J]. 计算机集成制造系统, 2019, 25: 1
24 Wang D H, Dong A P, Zhu G L, et al. The propagation and accumulation of dimensional shrinkage for ring-to-ring structure in investment casting[J]. Int. J. Adv. Manuf. Technol., 2018, 96: 623
doi: 10.1007/s00170-018-1631-8
25 Yu J P, Wang D H, Li D Y, et al. Process parameter effects on solidification behavior of the superalloy during investment casting[J]. Mater. Manuf. Process., 2019, 34: 1726
doi: 10.1080/10426914.2019.1666989
26 Wang D H, Sun F, Shu D, et al. Data-driven design of cast nickel-based superalloy and precision forming of complex castings[J]. Acta Metall. Sin., 2022, 58: 89
doi: 10.11900/0412.1961.2021.00355
26 汪东红, 孙 锋, 疏 达 等. 数据驱动镍基铸造高温合金设计及复杂铸件精确成形[J]. 金属学报, 2022, 58: 89
doi: 10.11900/0412.1961.2021.00355
27 Rajendra Y D, Mehrotra S C, Kale K V, et al. Evaluation of partially overlapping 3D point cloud's registration by using ICP variant and CloudCompare[J]. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., 2014, XL-8: 891
28 Chen G D, Han X, Liu G P. A multi-objective optimization method based on the approximate model manaement[J]. Eng. Mech., 2010, 27(5): 205
28 陈国栋, 韩 旭, 刘桂萍. 一种基于近似模型管理的多目标优化方法[J]. 工程力学, 2010, 27(5): 205
29 Zhao W, Fan F, Wang W. Non-linear partial least squares response surface method for structural reliability analysis[J]. Reliab. Eng. Syst. Saf., 2017, 161: 69
doi: 10.1016/j.ress.2017.01.004
[1] 孙宝德, 王俊, 康茂东, 汪东红, 董安平, 王飞, 高海燕, 王国祥, 杜大帆. 高温合金超限构件精密铸造技术及发展趋势[J]. 金属学报, 2022, 58(4): 412-427.
[2] 汪东红, 孙锋, 疏达, 陈晶阳, 肖程波, 孙宝德. 数据驱动镍基铸造高温合金设计及复杂铸件精确成形[J]. 金属学报, 2022, 58(1): 89-102.
[3] 王希,刘仁慈,曹如心,贾清,崔玉友,杨锐. 冷却速率对β凝固γ-TiAl合金硼化物和室温拉伸性能的影响[J]. 金属学报, 2020, 56(2): 203-211.
[4] 邵珩,李岩,南海,许庆彦. 熔模铸造条件下Ti6Al4V合金铸件与陶瓷型壳间界面换热系数研究*[J]. 金属学报, 2015, 51(8): 976-984.