|
|
铸态及激光粉末床熔融AlCoCrFeNi2.1 共晶高熵合金的微观组织及力学性能 |
唐旭1,2, 张昊1( ), 薛鹏1, 吴利辉1, 刘峰超1, 朱正旺1, 倪丁瑞1( ), 肖伯律1, 马宗义1 |
1 中国科学院金属研究所 师昌绪创新中心 沈阳 110016 2 中国科学技术大学 材料科学与工程学院 沈阳 110016 |
|
Microstructure and Mechanical Properties of As-Cast and Laser Powder Bed Fused AlCoCrFeNi2.1 Eutectic High-Entropy Alloy |
TANG Xu1,2, ZHANG Hao1( ), XUE Peng1, WU Lihui1, LIU Fengchao1, ZHU Zhengwang1, NI Dingrui1( ), XIAO Bolv1, MA Zongyi1 |
1 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China |
引用本文:
唐旭, 张昊, 薛鹏, 吴利辉, 刘峰超, 朱正旺, 倪丁瑞, 肖伯律, 马宗义. 铸态及激光粉末床熔融AlCoCrFeNi2.1 共晶高熵合金的微观组织及力学性能[J]. 金属学报, 2024, 60(11): 1461-1470.
Xu TANG,
Hao ZHANG,
Peng XUE,
Lihui WU,
Fengchao LIU,
Zhengwang ZHU,
Dingrui NI,
Bolv XIAO,
Zongyi MA.
Microstructure and Mechanical Properties of As-Cast and Laser Powder Bed Fused AlCoCrFeNi2.1 Eutectic High-Entropy Alloy[J]. Acta Metall Sin, 2024, 60(11): 1461-1470.
1 |
Leong Z, Ramamurty U, Tan T L. Microstructural and compositional design principles for Mo-V-Nb-Ti-Zr multi-principal element alloys: A high-throughput first-principles study [J]. Acta Mater., 2021, 213: 116958
|
2 |
Kies F, Wu X X, Hallstedt B, et al. Enhanced precipitation strengthening of multi-principal element alloys by κ- and B2-phases [J]. Mater. Des., 2021, 198: 109315
|
3 |
Chen Y J, Chen D K, An X H, et al. Unraveling dual phase transformations in a CrCoNi medium-entropy alloy [J]. Acta Mater., 2021, 215: 117112
|
4 |
Kautz E J, Schreiber D K, Devaraj A, et al. Mechanistic insights into selective oxidation and corrosion of multi-principal element alloys from high resolution and in situ microscopy [J]. Materialia, 2021, 18: 101148
|
5 |
Ding J L, Xu H J, Li X, et al. The similarity of elements in multi-principle element alloys based on a new criterion for phase constitution [J]. Mater. Des., 2021, 207: 109849
|
6 |
Vikram R J, Murty B S, Fabijanic D, et al. Insights into micro-mechanical response and texture of the additively manufactured eutectic high entropy alloy AlCoCrFeNi2.1 [J]. J. Alloys Compd., 2020, 827: 154034
|
7 |
Das S, Robi P S. Processing and characterization of W23Mo23V17Cr8-Ta7Fe22 and WMoVCrTa refractory high entropy alloys [J]. Int. J. Refract. Met. Hard Mater., 2021, 100: 105656
|
8 |
Dada M, Popoola P, Mathe N, et al. The comparative study of the microstructural and corrosion behaviour of laser-deposited high entropy alloys [J]. J. Alloys Compd., 2021, 866: 158777
|
9 |
He J Y, Wang H, Huang H L, et al. A precipitation-hardened high-entropy alloy with outstanding tensile properties [J]. Acta Mater., 2016, 102: 187
|
10 |
Rogal Ł. Semi-solid processing of the CoCrCuFeNi high entropy alloy [J]. Mater. Des., 2017, 119: 406
|
11 |
Tang Z, Senkov O N, Parish C M, et al. Tensile ductility of an AlCoCrFeNi multi-phase high-entropy alloy through hot isostatic pressing (HIP) and homogenization [J]. Mater. Sci. Eng., 2015, A647: 229
|
12 |
Wang M L, Cui H Z, Zhao Y Q, et al. A simple strategy for fabrication of an FCC-based complex concentrated alloy coating with hierarchical nanoprecipitates and enhanced mechanical properties [J]. Mater. Des., 2019, 180: 107893
|
13 |
Huang H L, Wu Y, He J Y, et al. Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering [J]. Adv. Mater., 2017, 29: 1701678
|
14 |
Li R D, Niu P D, Yuan T C, et al. Selective laser melting of an equiatomic CoCrFeMnNi high-entropy alloy: Processability, non-equilibrium microstructure and mechanical property [J]. J. Alloys Compd., 2018, 746: 125
|
15 |
Wang Q, Ma Y, Jiang B B, et al. A cuboidal B2 nanoprecipitation-enhanced body-centered-cubic alloy Al0.7CoCrFe2Ni with prominent tensile properties [J]. Scr. Mater., 2016, 120: 85
|
16 |
Lu Y P, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: Eutectic high-entropy alloys [J]. Sci. Rep., 2014, 4: 6200
doi: 10.1038/srep06200
pmid: 25160691
|
17 |
Lu Y P, Dong Y, Jiang H, et al. Promising properties and future trend of eutectic high entropy alloys [J]. Scr. Mater., 2020, 187: 202
|
18 |
Shi P J, Ren W L, Zheng T X, et al. Enhanced strength-ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae [J]. Nat. Commun., 2019, 10: 489
doi: 10.1038/s41467-019-08460-2
pmid: 30700708
|
19 |
Nassar A, Mullis A, Cochrane R, et al. Rapid solidification of AlCoCrFeNi2.1 high-entropy alloy [J]. J. Alloys Compd., 2022, 900: 163350
|
20 |
Wang J T, Long Z P, Jiang P F, et al. Microstructure, crystallographic orientation and mechanical property in AlCoCrFeNi2.1 eutectic high-entropy alloy under magnetic field-assisted directional solidification [J]. Metall. Mater. Trans., 2020, 51A: 3504
|
21 |
Gao X Z, Lu Y P, Zhang B, et al. Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy [J]. Acta Mater., 2017, 141: 59
|
22 |
Shi P J, Zhong Y B, Li Y, et al. Multistage work hardening assisted by multi-type twinning in ultrafine-grained heterostructural eutectic high-entropy alloys [J]. Mater. Today, 2020, 41: 62
|
23 |
Xiong T, Zheng S J, Pang J Y, et al. High-strength and high-ductility AlCoCrFeNi2.1 eutectic high-entropy alloy achieved via precipitation strengthening in a heterogeneous structure [J]. Scr. Mater., 2020, 186: 336
|
24 |
Wani I S, Bhattacharjee T, Sheikh S, et al. Tailoring nanostructures and mechanical properties of AlCoCrFeNi2.1 eutectic high entropy alloy using thermo-mechanical processing [J]. Mater. Sci. Eng., 2016, A675: 99
|
25 |
Brif Y, Thomas M, Todd I. The use of high-entropy alloys in additive manufacturing [J]. Scr. Mater., 2015, 99: 93
|
26 |
Tang X, Zhang S, Zhang C H, et al. Optimization of laser energy density and scanning strategy on the forming quality of 24CrNiMo low alloy steel manufactured by SLM [J]. Mater. Charact., 2020, 170: 110718
|
27 |
Guo Y N, Su H J, Zhou H T, et al. Unique strength-ductility balance of AlCoCrFeNi2.1 eutectic high entropy alloy with ultra-fine duplex microstructure prepared by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 111: 298
|
28 |
He L, Wu S W, Dong A P, et al. Selective laser melting of dense and crack-free AlCoCrFeNi2.1 eutectic high entropy alloy: Synergizing strength and ductility [J]. J. Mater. Sci. Technol., 2022, 117: 133
|
29 |
Ren J, Zhang Y, Zhao D X, et al. Strong yet ductile nanolamellar high-entropy alloys by additive manufacturing [J]. Nature, 2022, 608: 62
|
30 |
Chen X S, Kong J, Li J L, et al. High-strength AlCoCrFeNi2.1 eutectic high entropy alloy with ultrafine lamella structure via additive manufacturing [J]. Mater. Sci. Eng., 2022, A854: 143816
|
31 |
Miao J W, Wang M L, Zhang A J, et al. Tribological properties and wear mechanism of AlCr1.3TiNi2 eutectic high-entropy alloy at elevated temperature [J]. Acta Metall. Sin., 2023, 59: 267
|
31 |
苗军伟, 王明亮, 张爱军 等. AlCr1.3TiNi2共晶高熵合金的高温摩擦学性能及磨损机理 [J]. 金属学报, 2023, 59: 267
doi: 10.11900/0412.1961.2021.00589
|
32 |
Tsai K Y, Tsai M H, Yeh J W. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys [J]. Acta Mater., 2013, 61: 4887
|
33 |
Tang X, Zhang H, Zhu Z W, et al. Dual-phase synergistic deformation characteristics and strengthening mechanism of AlCoCrFeNi2.1 eutectic high entropy alloy fabricated by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2023, 150: 75
|
34 |
Mullins W W, Sekerka R F. Stability of a planar interface during solidification of a dilute binary alloy [J]. J. Appl. Phys., 1964, 35: 444
|
35 |
Xiong M X, Liew J Y R. Mechanical properties of heat-treated high tensile structural steel at elevated temperatures [J]. Thin-Wall. Struct., 2016, 98: 169
|
36 |
Qiang X H, Bijlaard F, Kolstein H. Dependence of mechanical properties of high strength steel S690 on elevated temperatures [J]. Constr. Build. Mater., 2012, 30: 73
|
37 |
Jiang J, Bao W, Peng Z Y, et al. Experimental investigation on mechanical behaviours of TMCP high strength steel [J]. Constr. Build. Mater., 2019, 200: 664
doi: 10.1016/j.conbuildmat.2018.12.130
|
38 |
Shaheen M A, Presswood R, Afshan S. Application of machine learning to predict the mechanical properties of high strength steel at elevated temperatures based on the chemical composition [J]. Structures, 2023, 52: 17
|
39 |
Yakel H L. Atom distribution in sigma phases. Ⅰ. Fe and Cr atom distribution in a binary sigma phase equilibrated at 1063, 1013 and 923K [J]. Acta Cryst., 1983, 39B: 20
|
40 |
Chinese Society of Metals High Temperature Materials Branch. China Superalloys Handbook [M]. Beijing: Standards Press of China, 2012: 30
|
40 |
中国金属学会高温材料分会. 中国高温合金手册 [M]. 北京: 中国标准出版社, 2012: 30
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|