Please wait a minute...
金属学报  2024, Vol. 60 Issue (11): 1461-1470    DOI: 10.11900/0412.1961.2023.00301
  研究论文 本期目录 | 过刊浏览 |
铸态及激光粉末床熔融AlCoCrFeNi2.1 共晶高熵合金的微观组织及力学性能
唐旭1,2, 张昊1(), 薛鹏1, 吴利辉1, 刘峰超1, 朱正旺1, 倪丁瑞1(), 肖伯律1, 马宗义1
1 中国科学院金属研究所 师昌绪创新中心 沈阳 110016
2 中国科学技术大学 材料科学与工程学院 沈阳 110016
Microstructure and Mechanical Properties of As-Cast and Laser Powder Bed Fused AlCoCrFeNi2.1 Eutectic High-Entropy Alloy
TANG Xu1,2, ZHANG Hao1(), XUE Peng1, WU Lihui1, LIU Fengchao1, ZHU Zhengwang1, NI Dingrui1(), XIAO Bolv1, MA Zongyi1
1 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

唐旭, 张昊, 薛鹏, 吴利辉, 刘峰超, 朱正旺, 倪丁瑞, 肖伯律, 马宗义. 铸态及激光粉末床熔融AlCoCrFeNi2.1 共晶高熵合金的微观组织及力学性能[J]. 金属学报, 2024, 60(11): 1461-1470.
Xu TANG, Hao ZHANG, Peng XUE, Lihui WU, Fengchao LIU, Zhengwang ZHU, Dingrui NI, Bolv XIAO, Zongyi MA. Microstructure and Mechanical Properties of As-Cast and Laser Powder Bed Fused AlCoCrFeNi2.1 Eutectic High-Entropy Alloy[J]. Acta Metall Sin, 2024, 60(11): 1461-1470.

全文: PDF(4942 KB)   HTML
摘要: 

共晶高熵合金作为一种原位复合材料,因其具有典型的双相层片状组织和良好的流动性能,在组织以及性能调控方面具有巨大的潜力。本工作分别采用真空感应熔炼和激光粉末床熔融(LPBF)制备了AlCoCrFeNi2.1共晶高熵合金,分析了制备工艺对该合金微观组织的影响,并探究了2种样品在室温、500℃和700℃条件下的拉伸性能。结果表明,铸态和LPBF成形样品均呈现出由fcc相和bcc/B2相交替组成的共晶结构。LPBF过程中极高的加热和冷却速率有利于超细均匀共晶层片的形成,并且显著降低了元素偏析。在室温拉伸变形过程中,由于较强的相界强化和双相协同变形特性,使得LPBF成形样品的抗拉强度相较于铸态样品提升了约28%,并获得了10%的良好延伸率。在500℃拉伸条件下,铸态及LPBF成形样品的力学性能均有所下降,这可能归因于合金中剧烈的相变。随拉伸温度升至700℃,铸态样品的力学性能持续降低,而LPBF成形样品表现出更低的抗拉强度和优异的伸长率,其原因是其超细共晶层片在高温条件下易于沿相界发生相对滑动,此时合金的断裂机制以韧性断裂为主。

关键词 共晶高熵合金激光粉末床熔融显微组织力学性能断裂机制    
Abstract

Eutectic high-entropy alloys (EHEAs), as a typical kind of in situ composite, have become a potential alternative for conventional alloys because of their advantages in high-entropy alloys and eutectic alloys. Casting is the conventional preparation method of EHEAs, which is a well-established process with low production efficiency. Laser powder bed fusion (LPBF) is an economical and effective preparation technology that provides a novel way to directly form fine and complex EHEA components. In this study, considering the different application requirements and technical characteristics, AlCoCrFeNi2.1 EHEA was prepared by vacuum induction melting and LPBF, respectively. The effect of the preparation process on the microstructure of the alloy was investigated. In addition, tensile properties of the samples at 20, 500, and 700°C were investigated. Results showed that as-cast and LPBF-formed AlCoCrFeNi2.1 exhibited a eutectic structure composed of alternating fcc and bcc/B2 phases. The high heating and cooling rates during the LPBF process were conducive to the formation of ultrafine and uniform eutectic lamellae, which significantly reduced element segregation. During tensile deformation at room temperature, considering the strong phase boundary strengthening and dual-phase synergistic deformation, the ultimate tensile strength of the LPBF-formed sample was enhanced by about 28% compared with that of the as-cast sample, and a satisfactory elongation of 10% was obtained. At 500°C, the mechanical properties of the as-cast and LPBF-formed samples decreased probably because of the severe phase transformation in the alloy. When the testing temperature was increased to 700°C, the mechanical properties of the as-cast sample continued to decrease. The LPBF-formed samples showed a low tensile strength and superior elongation that should be attributed to the eutectic lamellae sliding along the phase boundaries at high temperatures. Meanwhile, the fracture mechanism of the LPBF-formed sample was dominated by ductile fracture. This work could provide a theoretical basis for the optimization of the microstructure and mechanical properties of EHEAs, thereby promoting their industrial application.

Key wordseutectic high-entropy alloy    laser powder bed fusion    microstructure    mechanical property    fracture mechanism
收稿日期: 2023-07-14     
ZTFLH:  TG132.32  
基金资助:国家自然科学基金项目(U21A2043);中国科学院青年创新促进会项目(2022191);Bintech-IMR研发计划项目(GYY-JSBU-2022-010)
通讯作者: 倪丁瑞,drni@imr.ac.cn,主要从事有色金属及其复合材料的焊接与加工制备研究;
张 昊,haozhang@imr.ac.cn,主要从事激光增材制造研究
Corresponding author: NI Dingrui, professor, Tel: (024)23971752, E-mail: drni@imr.ac.cn;
作者简介: 唐 旭,女,1995年生,博士生
图1  AlCoCrFeNi2.1粉末的SEM像和粒径分布
图2  拉伸试样的尺寸示意图
图3  铸态和激光粉末床熔融(LPBF)成形AlCoCrFe-Ni2.1试样显微组织的OM像
图4  铸态和LPBF成形AlCoCrFeNi2.1样品的XRD谱
图5  铸态和LPBF成形AlCoCrFeNi2.1样品显微组织的SEM像
图6  铸态和LPBF成形AlCoCrFeNi2.1样品的STEM暗场像、选区电子衍射花样及EDS分析
图7  铸态和LPBF成形AlCoCrFeNi2.1样品在不同温度下的应力-应变曲线及抗拉强度和伸长率随温度的变化情况
图8  AlCoCrFeNi2.1合金相图
图9  铸态和LPBF成形AlCoCrFeNi2.1样品在不同温度下拉伸断裂后断口形貌的SEM像
图10  铸态和LPBF成形AlCoCrFeNi2.1样品在不同温度下拉伸断裂后断口纵截面的SEM像
1 Leong Z, Ramamurty U, Tan T L. Microstructural and compositional design principles for Mo-V-Nb-Ti-Zr multi-principal element alloys: A high-throughput first-principles study [J]. Acta Mater., 2021, 213: 116958
2 Kies F, Wu X X, Hallstedt B, et al. Enhanced precipitation strengthening of multi-principal element alloys by κ- and B2-phases [J]. Mater. Des., 2021, 198: 109315
3 Chen Y J, Chen D K, An X H, et al. Unraveling dual phase transformations in a CrCoNi medium-entropy alloy [J]. Acta Mater., 2021, 215: 117112
4 Kautz E J, Schreiber D K, Devaraj A, et al. Mechanistic insights into selective oxidation and corrosion of multi-principal element alloys from high resolution and in situ microscopy [J]. Materialia, 2021, 18: 101148
5 Ding J L, Xu H J, Li X, et al. The similarity of elements in multi-principle element alloys based on a new criterion for phase constitution [J]. Mater. Des., 2021, 207: 109849
6 Vikram R J, Murty B S, Fabijanic D, et al. Insights into micro-mechanical response and texture of the additively manufactured eutectic high entropy alloy AlCoCrFeNi2.1 [J]. J. Alloys Compd., 2020, 827: 154034
7 Das S, Robi P S. Processing and characterization of W23Mo23V17Cr8-Ta7Fe22 and WMoVCrTa refractory high entropy alloys [J]. Int. J. Refract. Met. Hard Mater., 2021, 100: 105656
8 Dada M, Popoola P, Mathe N, et al. The comparative study of the microstructural and corrosion behaviour of laser-deposited high entropy alloys [J]. J. Alloys Compd., 2021, 866: 158777
9 He J Y, Wang H, Huang H L, et al. A precipitation-hardened high-entropy alloy with outstanding tensile properties [J]. Acta Mater., 2016, 102: 187
10 Rogal Ł. Semi-solid processing of the CoCrCuFeNi high entropy alloy [J]. Mater. Des., 2017, 119: 406
11 Tang Z, Senkov O N, Parish C M, et al. Tensile ductility of an AlCoCrFeNi multi-phase high-entropy alloy through hot isostatic pressing (HIP) and homogenization [J]. Mater. Sci. Eng., 2015, A647: 229
12 Wang M L, Cui H Z, Zhao Y Q, et al. A simple strategy for fabrication of an FCC-based complex concentrated alloy coating with hierarchical nanoprecipitates and enhanced mechanical properties [J]. Mater. Des., 2019, 180: 107893
13 Huang H L, Wu Y, He J Y, et al. Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering [J]. Adv. Mater., 2017, 29: 1701678
14 Li R D, Niu P D, Yuan T C, et al. Selective laser melting of an equiatomic CoCrFeMnNi high-entropy alloy: Processability, non-equilibrium microstructure and mechanical property [J]. J. Alloys Compd., 2018, 746: 125
15 Wang Q, Ma Y, Jiang B B, et al. A cuboidal B2 nanoprecipitation-enhanced body-centered-cubic alloy Al0.7CoCrFe2Ni with prominent tensile properties [J]. Scr. Mater., 2016, 120: 85
16 Lu Y P, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: Eutectic high-entropy alloys [J]. Sci. Rep., 2014, 4: 6200
doi: 10.1038/srep06200 pmid: 25160691
17 Lu Y P, Dong Y, Jiang H, et al. Promising properties and future trend of eutectic high entropy alloys [J]. Scr. Mater., 2020, 187: 202
18 Shi P J, Ren W L, Zheng T X, et al. Enhanced strength-ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae [J]. Nat. Commun., 2019, 10: 489
doi: 10.1038/s41467-019-08460-2 pmid: 30700708
19 Nassar A, Mullis A, Cochrane R, et al. Rapid solidification of AlCoCrFeNi2.1 high-entropy alloy [J]. J. Alloys Compd., 2022, 900: 163350
20 Wang J T, Long Z P, Jiang P F, et al. Microstructure, crystallographic orientation and mechanical property in AlCoCrFeNi2.1 eutectic high-entropy alloy under magnetic field-assisted directional solidification [J]. Metall. Mater. Trans., 2020, 51A: 3504
21 Gao X Z, Lu Y P, Zhang B, et al. Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy [J]. Acta Mater., 2017, 141: 59
22 Shi P J, Zhong Y B, Li Y, et al. Multistage work hardening assisted by multi-type twinning in ultrafine-grained heterostructural eutectic high-entropy alloys [J]. Mater. Today, 2020, 41: 62
23 Xiong T, Zheng S J, Pang J Y, et al. High-strength and high-ductility AlCoCrFeNi2.1 eutectic high-entropy alloy achieved via precipitation strengthening in a heterogeneous structure [J]. Scr. Mater., 2020, 186: 336
24 Wani I S, Bhattacharjee T, Sheikh S, et al. Tailoring nanostructures and mechanical properties of AlCoCrFeNi2.1 eutectic high entropy alloy using thermo-mechanical processing [J]. Mater. Sci. Eng., 2016, A675: 99
25 Brif Y, Thomas M, Todd I. The use of high-entropy alloys in additive manufacturing [J]. Scr. Mater., 2015, 99: 93
26 Tang X, Zhang S, Zhang C H, et al. Optimization of laser energy density and scanning strategy on the forming quality of 24CrNiMo low alloy steel manufactured by SLM [J]. Mater. Charact., 2020, 170: 110718
27 Guo Y N, Su H J, Zhou H T, et al. Unique strength-ductility balance of AlCoCrFeNi2.1 eutectic high entropy alloy with ultra-fine duplex microstructure prepared by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 111: 298
28 He L, Wu S W, Dong A P, et al. Selective laser melting of dense and crack-free AlCoCrFeNi2.1 eutectic high entropy alloy: Synergizing strength and ductility [J]. J. Mater. Sci. Technol., 2022, 117: 133
29 Ren J, Zhang Y, Zhao D X, et al. Strong yet ductile nanolamellar high-entropy alloys by additive manufacturing [J]. Nature, 2022, 608: 62
30 Chen X S, Kong J, Li J L, et al. High-strength AlCoCrFeNi2.1 eutectic high entropy alloy with ultrafine lamella structure via additive manufacturing [J]. Mater. Sci. Eng., 2022, A854: 143816
31 Miao J W, Wang M L, Zhang A J, et al. Tribological properties and wear mechanism of AlCr1.3TiNi2 eutectic high-entropy alloy at elevated temperature [J]. Acta Metall. Sin., 2023, 59: 267
31 苗军伟, 王明亮, 张爱军 等. AlCr1.3TiNi2共晶高熵合金的高温摩擦学性能及磨损机理 [J]. 金属学报, 2023, 59: 267
doi: 10.11900/0412.1961.2021.00589
32 Tsai K Y, Tsai M H, Yeh J W. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys [J]. Acta Mater., 2013, 61: 4887
33 Tang X, Zhang H, Zhu Z W, et al. Dual-phase synergistic deformation characteristics and strengthening mechanism of AlCoCrFeNi2.1 eutectic high entropy alloy fabricated by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2023, 150: 75
34 Mullins W W, Sekerka R F. Stability of a planar interface during solidification of a dilute binary alloy [J]. J. Appl. Phys., 1964, 35: 444
35 Xiong M X, Liew J Y R. Mechanical properties of heat-treated high tensile structural steel at elevated temperatures [J]. Thin-Wall. Struct., 2016, 98: 169
36 Qiang X H, Bijlaard F, Kolstein H. Dependence of mechanical properties of high strength steel S690 on elevated temperatures [J]. Constr. Build. Mater., 2012, 30: 73
37 Jiang J, Bao W, Peng Z Y, et al. Experimental investigation on mechanical behaviours of TMCP high strength steel [J]. Constr. Build. Mater., 2019, 200: 664
doi: 10.1016/j.conbuildmat.2018.12.130
38 Shaheen M A, Presswood R, Afshan S. Application of machine learning to predict the mechanical properties of high strength steel at elevated temperatures based on the chemical composition [J]. Structures, 2023, 52: 17
39 Yakel H L. Atom distribution in sigma phases. Ⅰ. Fe and Cr atom distribution in a binary sigma phase equilibrated at 1063, 1013 and 923K [J]. Acta Cryst., 1983, 39B: 20
40 Chinese Society of Metals High Temperature Materials Branch. China Superalloys Handbook [M]. Beijing: Standards Press of China, 2012: 30
40 中国金属学会高温材料分会. 中国高温合金手册 [M]. 北京: 中国标准出版社, 2012: 30
[1] 张乾坤, 胡小锋, 姜海昌, 戎利建. Si对一种9Cr铁素体/马氏体钢显微组织和力学性能的影响[J]. 金属学报, 2024, 60(9): 1200-1212.
[2] 周牧, 王倩, 王延绪, 翟梓融, 何伦华, 李昺, 马英杰, 雷家峰, 杨锐. 焊前预处理对钛合金厚板焊接残余应力的影响[J]. 金属学报, 2024, 60(8): 1064-1078.
[3] 陈诚, 杨光昱, 金梦辉, 王强, 汤鑫, 程会民, 介万奇. 铸型正反转搅动对精密铸造K4169合金凝固组织和室温力学性能的影响[J]. 金属学报, 2024, 60(7): 926-936.
[4] 孟玉佳, 席通, 杨春光, 赵金龙, 张新蕊, 于英杰, 杨柯. Ga添加对304L不锈钢力学性能和抗菌性能的影响[J]. 金属学报, 2024, 60(7): 890-900.
[5] 许仁杰, 屠鑫, 胡斌, 罗海文. Cu-V双合金化3Mn钢的组织和力学性能[J]. 金属学报, 2024, 60(6): 817-825.
[6] 谢丽文, 张立龙, 刘艳艳, 张明阳, 王绍钢, 焦大, 刘增乾, 张哲峰. 不锈钢纤维增强镁基仿生复合材料制备与力学性能[J]. 金属学报, 2024, 60(6): 760-769.
[7] 王峰, 白盛巍, 王志, 杜旭东, 周乐, 毛萍莉, 魏子淇, 李瑾伟. Mg-Zn系合金热裂行为的研究进展[J]. 金属学报, 2024, 60(6): 743-759.
[8] 李天瑞, 许瑜倩, 吴文平, 甘文萱, 杨永, 刘国怀, 王昭东. VB元素对Ti-44Al-5Nb-1Mo合金显微组织及热变形机制的影响[J]. 金属学报, 2024, 60(5): 650-660.
[9] 王金鑫, 姚美意, 林雨晨, 陈刘涛, 高长源, 徐诗彤, 胡丽娟, 谢耀平, 周邦新. Zr-1Nb-xFe合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2024, 60(5): 670-680.
[10] 汪建强, 刘威峰, 刘生, 徐斌, 孙明月, 李殿中. 700℃时效对9Cr ODS钢微观组织和力学性能的影响[J]. 金属学报, 2024, 60(5): 616-626.
[11] 黎康杰, 孙泽羽, 何蓓, 田象军. 基于熔池原位冶金的电弧增材制造Al-Cu-Li合金显微组织与硬度[J]. 金属学报, 2024, 60(5): 661-669.
[12] 王郑, 王振玉, 汪爱英, 杨巍, 柯培玲. 微弧氧化时间对锆合金表面MAO/Cr复合涂层结构与性能的影响[J]. 金属学报, 2024, 60(5): 691-698.
[13] 曾立, 王桂兰, 张海鸥, 翟文正, 张勇, 张明波. 电弧微铸锻复合增材制造GH4169D高温合金的显微组织与力学性能[J]. 金属学报, 2024, 60(5): 681-690.
[14] 黄建松, 裴文, 徐诗彤, 白勇, 姚美意, 胡丽娟, 谢耀平, 周邦新. Nb锆合金在含氧蒸汽中耐腐蚀性能恶化的机理[J]. 金属学报, 2024, 60(4): 509-521.
[15] 田滕, 查敏, 殷皓亮, 花珍铭, 贾海龙, 王慧远. 低温高应变量衬板控轧高固溶Al-Mg合金高强塑性与高热稳定性机制[J]. 金属学报, 2024, 60(4): 473-484.