|
|
微电子互连用锡基合金及复合钎料热-机械可靠性研究进展 |
郭福( ), 杜逸晖, 籍晓亮, 王乙舒 |
北京工业大学 材料与制造学部 北京 100124 |
|
Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection |
GUO Fu( ), DU Yihui, JI Xiaoliang, WANG Yishu |
Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China |
引用本文:
郭福, 杜逸晖, 籍晓亮, 王乙舒. 微电子互连用锡基合金及复合钎料热-机械可靠性研究进展[J]. 金属学报, 2023, 59(6): 744-756.
Fu GUO,
Yihui DU,
Xiaoliang JI,
Yishu WANG.
Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. Acta Metall Sin, 2023, 59(6): 744-756.
1 |
Lall P, Yadav V, Suhling J, et al. Evolution of Anand parameters for thermally aged Sn-Ag-Cu lead-free alloys at low operating temperature [J]. J. Electron. Packag., 2022, 144: 021116
|
2 |
Zhong S J, Zhang L, Li M L, et al. Development of lead-free interconnection materials in electronic industry during the past decades: Structure and properties [J]. Mater. Des., 2022, 215: 110439
doi: 10.1016/j.matdes.2022.110439
|
3 |
Samavatian M, Ilyashenko L K, Surendar A, et al. Effects of system design on fatigue life of solder joints in BGA packages under vibration at random frequencies [J]. J. Electron. Mater., 2018, 47: 6781
doi: 10.1007/s11664-018-6600-3
|
4 |
Hommel M, Knab H, Yousef S G. Reliability of automotive and consumer MEMS sensors—An overview [J]. Microelectron. Reliab., 2021, 126: 114252
doi: 10.1016/j.microrel.2021.114252
|
5 |
Cheng S F, Huang C M, Pecht M. A review of lead-free solders for electronics applications [J]. Microelectron. Reliab., 2017, 75: 77
doi: 10.1016/j.microrel.2017.06.016
|
6 |
Zhang L, He C W, Guo Y H, et al. Development of SnAg-based lead free solders in electronics packaging [J]. Microelectron. Reliab., 2012, 52: 559
doi: 10.1016/j.microrel.2011.10.006
|
7 |
Zhao M, Zhang L, Liu Z Q, et al. Structure and properties of Sn-Cu lead-free solders in electronics packaging [J]. Sci. Technol. Adv. Mater., 2019, 20: 421
doi: 10.1080/14686996.2019.1591168
|
8 |
Yang F, Zhang L, Liu Z Q, et al. Properties and microstructures of Sn-Bi-X lead-free solders [J]. Adv. Mater. Sci. Eng., 2016, 2016: 9265195
|
9 |
Wang F J, Chen H, Huang Y, et al. Recent progress on the development of Sn-Bi based low-temperature Pb-free solders [J]. J. Mater. Sci.: Mater. Electron., 2019, 30: 3222
doi: 10.1007/s10854-019-00701-w
|
10 |
Li Y, Lim A B Y, Luo K M, et al. Phase segregation, interfacial intermetallic growth and electromigration-induced failure in Cu/In-48Sn/Cu solder interconnects under current stressing [J]. J. Alloys Compd., 2016, 673: 372
doi: 10.1016/j.jallcom.2016.02.244
|
11 |
Liu S, Xue S B, Xue P, et al. Present status of Sn-Zn lead-free solders bearing alloying elements [J]. J. Mater. Sci.: Mater. Electron., 2015, 26: 4389
doi: 10.1007/s10854-014-2659-7
|
12 |
Curtulo J P, Dias M, Bertelli F, et al. The application of an analytical model to solve an inverse heat conduction problem: Transient solidification of a Sn-Sb peritectic solder alloy on distinct substrates [J]. J. Manuf. Process., 2019, 48: 164
doi: 10.1016/j.jmapro.2019.10.029
|
13 |
Wang X, Zhang L, Li M L. Microstructure and properties of Sn-Ag and Sn-Sb lead-free solders in electronics packaging: A review [J]. J. Mater. Sci.: Mater. Electron., 2022, 33: 2259
doi: 10.1007/s10854-021-07437-6
|
14 |
Li S, Wang X X, Liu Z Y, et al. Research status of evolution of microstructure and properties of Sn-based lead-free composite solder alloys [J]. J. Nanomater., 2020, 2020: 8843166
|
15 |
Chen G, Wu Y F. Main application limitations of lead-free composite solder doped with foreign reinforcements [J]. J. Mater. Sci.: Mater. Electron., 2021, 32: 24644
doi: 10.1007/s10854-021-06938-8
|
16 |
Rajendran S H, Cho D H, Jung J P. Comparative study on the wettability and thermal aging characteristics of SAC305 nanocomposite solder fabricated by stir-casting and ultrasonic treatment [J]. Mater. Today Commun., 2022, 31: 103814
|
17 |
Zhao Z L, Liu X, Li R, et al. Study on solder joint of SAC0307 solder paste reinforced by nano Ag/Cu particles [J]. Trans. China Weld. Inst., 2018, 39(9): 95
|
17 |
赵智力, 刘 鑫, 李 睿 等. 纳米颗粒增强SAC0307锡膏焊点的分析 [J]. 焊接学报, 2018, 39(9): 95
doi: 10.12073/j.hjxb.2018390231
|
18 |
Xin T, Sun F L, Liu Y, et al. Study on the formation mechanism of porosity and properties of the SAC305-nano Cu composite solder paste reflowed [J]. Trans. China Weld. Inst., 2017, 38(11): 61
|
18 |
辛 瞳, 孙凤莲, 刘 洋 等. SAC305-纳米铜复合焊膏焊后性能及孔隙形成机理 [J]. 焊接学报, 2017, 38(11): 61
|
19 |
Zhu Z, Chan Y C, Chen Z, et al. Effect of the size of carbon nanotubes (CNTs) on the microstructure and mechanical strength of CNTs-doped composite Sn0.3Ag0.7Cu-CNTs solder [J]. Mater. Sci. Eng., 2018, A727: 160
|
20 |
Li M L, Zhang L, Jiang N, et al. Influences of silicon carbide nanowires' addition on IMC growth behavior of pure Sn solder during solid-liquid diffusion [J]. J. Mater. Sci.: Mater. Electron., 2021, 32: 18067
doi: 10.1007/s10854-021-06348-w
|
21 |
Tang Y, Guo Q W, Luo S M, et al. Formation and growth of interfacial intermetallics in Sn-0.3Ag-0.7Cu-xCeO2/Cu solder joints during the reflow process [J]. J. Alloys Compd., 2019, 778: 741
doi: 10.1016/j.jallcom.2018.11.156
|
22 |
Wu J, Xue S B, Wang J W, et al. Effects of α-Al2O3 nanoparticles-doped on microstructure and properties of Sn-0.3Ag-0.7Cu low-Ag solder [J]. J. Mater. Sci.: Mater. Electron., 2018, 29: 7372
doi: 10.1007/s10854-018-8727-7
|
23 |
Chellvarajoo S, Abdullah M Z. Microstructure and mechanical properties of Pb-free Sn-3.0Ag-0.5Cu solder pastes added with NiO nanoparticles after reflow soldering process [J]. Mater. Des., 2016, 90: 499
doi: 10.1016/j.matdes.2015.10.142
|
24 |
Chen G, Cui X Z, Wu Y F, et al. Microstructural, compositional and hardness evolutions of 96.5Sn-3Ag-0.5Cu/TiC composite solder under thermo-migration stressing [J]. J. Mater. Sci.: Mater. Electron., 2020, 31: 9492
doi: 10.1007/s10854-020-03491-8
|
25 |
Chen G, Cui X Z, Wu Y F, et al. Performance of 96.5Sn-3Ag-0.5Cu/fullerene composite solder under isothermal ageing and high-current stressing [J]. Soldering Surf. Mount Technol., 2021, 33: 35
doi: 10.1108/SSMT-02-2020-0004
|
26 |
Mohd Salleh M A A, Mcdonald S D, Terada Y, et al. Development of a microwave sintered TiO2 reinforced Sn-0.7wt%Cu-0.05wt%Ni alloy [J]. Mater. Des., 2015, 82: 136
doi: 10.1016/j.matdes.2015.05.077
|
27 |
Shin H, Lee S, Suk Jung H, et al. Effect of ball size and powder loading on the milling efficiency of a laboratory-scale wet ball mill [J]. Ceram. Int., 2013, 39: 8963
doi: 10.1016/j.ceramint.2013.04.093
|
28 |
Li Y, Xu L Y, Jing H Y, et al. Homogeneous dispersion of graphene and interface metallurgical bonding in Sn-Ag-Cu alloy induced by ball milling [J]. Mater. Sci. Eng., 2021, A824: 141823
|
29 |
Jing H Y, Guo H J, Wang L X, et al. Influence of Ag-modified graphene nanosheets addition into Sn-Ag-Cu solders on the formation and growth of intermetallic compound layers [J]. J. Alloys Compd., 2017, 702: 669
doi: 10.1016/j.jallcom.2017.01.286
|
30 |
Han Y D, Gao Y, Zhang S T, et al. Study of mechanical properties of Ag nanoparticle-modified graphene/Sn-Ag-Cu solders by nanoindentation [J]. Mater. Sci. Eng., 2019, A761: 138051
|
31 |
Bang J, Yu D Y, Ko Y H, et al. Intermetallic compound growth between Sn-Cu-Cr lead-free solder and Cu substrate [J]. Microelectron. Reliab., 2019, 99: 62
doi: 10.1016/j.microrel.2019.05.019
|
32 |
Wang Y, Wang Y S, Ma L M, et al. Effect of Sn grain c-axis on Cu atomic motion in Cu reinforced composite solder joints under electromigration [J]. J. Electron. Mater., 2020, 49: 2159
doi: 10.1007/s11664-019-07897-x
|
33 |
Wang Y, Wang Y S, Han J, et al. Effects of Sn grain c-axis on electromigration in Cu reinforced composite solder joints [J]. J. Mater. Sci.: Mater. Electron., 2018, 29: 5954
doi: 10.1007/s10854-018-8568-4
|
34 |
Wang Y, Han J, Guo F, et al. Effects of grain orientation on the electromigration of Cu-reinforced composite solder joints [J]. J. Electron. Mater., 2017, 46: 5877
doi: 10.1007/s11664-017-5585-7
|
35 |
Wen Y N, Zhao X C, Chen Z, et al. Reliability enhancement of Sn-1.0Ag-0.5Cu nano-composite solders by adding multiple sizes of TiO2 nanoparticles [J]. J. Alloys Compd., 2017, 696: 799
doi: 10.1016/j.jallcom.2016.12.037
|
36 |
Hammad A E, Ibrahiem A A. Enhancing the microstructure and tensile creep resistance of Sn-3.0Ag-0.5Cu solder alloy by reinforcing nano-sized ZnO particles [J]. Microelectron. Reliab., 2017, 75: 187
doi: 10.1016/j.microrel.2017.07.034
|
37 |
Abd El-Rehim A F, Zahran H Y, Yassin A M. Microstructure evolution and tensile creep behavior of Sn-0.7Cu lead-free solder reinforced with ZnO nanoparticles [J]. J. Mater. Sci.: Mater. Electron., 2019, 30: 2213
doi: 10.1007/s10854-018-0492-0
|
38 |
Mansour M M, Fawzy A, Wahab L A, et al. Tensile characteristics of Sn-5wt%Sb-1.5wt%Ag reinforced by Nano-sized ZnO particles [J]. J. Mater. Sci.: Mater. Electron., 2019, 30: 4831
doi: 10.1007/s10854-019-00777-4
|
39 |
Callister W D, Rethwisch D G. Materials science and engineering [M]. 9th Ed., Hoboken: John Wiley and Sons Ltd., 2014: 3
|
40 |
Nguyen V S, Rouxel D, Hadji R, et al. Effect of ultrasonication and dispersion stability on the cluster size of alumina nanoscale particles in aqueous solutions [J]. Ultrason. Sonochem., 2011, 18: 382
doi: 10.1016/j.ultsonch.2010.07.003
pmid: 20667760
|
41 |
Li J W, Momono T, Tayu Y, et al. Application of ultrasonic treating to degassing of metal ingots [J]. Mater. Lett., 2008, 62: 4152
doi: 10.1016/j.matlet.2008.06.016
|
42 |
Li Q, Qiu F, Dong B X, et al. Fabrication, microstructure refinement and strengthening mechanisms of nanosized SiCP/Al composites assisted ultrasonic vibration [J]. Mater. Sci. Eng., 2018, A735: 310
|
43 |
Li M L, Zhang L, Jiang N, et al. Materials modification of the lead-free solders incorporated with micro/nano-sized particles: A review [J]. Mater. Des., 2021, 197: 109224
doi: 10.1016/j.matdes.2020.109224
|
44 |
Shen J, Pu Y Y, Yin H G, et al. Effects of minor Cu and Zn additions on the thermal, microstructure and tensile properties of Sn-Bi-based solder alloys [J]. J. Alloys Compd., 2014, 614: 63
doi: 10.1016/j.jallcom.2014.06.015
|
45 |
Wei Y H, Zhao X C, Liu Z C, et al. Impact of precipitated phases on the microstructure and mechanical properties of eutectic Sn58Bi alloy [J]. J. Alloys Compd., 2022, 903: 163882
doi: 10.1016/j.jallcom.2022.163882
|
46 |
Wei Y H, Zhao X C, Liu Z C, et al. Effects of various second phase ratios and contents on microstructure and mechanical properties of eutectic Sn58Bi alloy [J]. Mater. Des., 2022, 218: 110698
doi: 10.1016/j.matdes.2022.110698
|
47 |
Nurulakmal M S, Aili Zuriatie N. Effect of Zn and in to microstructure of aged SAC305/Cu joint [J]. Mater. Today: Proc., 2022, 66: 3014
|
48 |
Kong X X, Zhai J J, Sun F L, et al. Combined effect of Bi and Ni elements on the mechanical properties of low-Ag Cu/Sn-0.7Ag-0.5Cu/Cu solder joints [J]. Microelectron. Reliab., 2020, 107: 113618
doi: 10.1016/j.microrel.2020.113618
|
49 |
Du Y H, Wang Y S, Ji X L, et al. Impact of Ni-coated carbon fiber on the interfacial (Cu,Ni)6Sn5 growth of Sn-3.5Ag composite solder on Cu substrate during reflow and isothermal aging [J]. Mater. Today Commun., 2022, 31: 103572
|
50 |
Sivakumar P, O'donnell K, Cho J. Effects of bismuth and nickel on the microstructure evolution of Sn-Ag-Cu (SAC)-based solders [J]. Mater. Today Commun., 2021, 26: 101787
|
51 |
Beáta Š, Erika H, Ingrid K. Development of SnAgCu solders with Bi and In additions and microstructural characterization of joint interface [J]. Weld. World, 2017, 61: 613
doi: 10.1007/s40194-017-0446-9
|
52 |
Chen Y Y, You K D, Yu S T, et al. Optimization of mechanical properties of Sn-3.8Ag-0.7Cu alloys by the additions of Bi, In and Ti [J]. Prog. Nat. Sci.: Mater. Int., 2022, 32: 643
doi: 10.1016/j.pnsc.2022.10.004
|
53 |
Rashidi R, Naffakh-Moosavy H. Metallurgical, physical, mechanical and oxidation behavior of lead-free chromium dissolved Sn-Cu-Bi solders [J]. J. Mater. Res. Technol., 2021, 13: 1805
doi: 10.1016/j.jmrt.2021.05.055
|
54 |
Rashidi R, Naffakh-Moosavy H. The influence of chromium addition on the metallurgical, mechanical and fracture aspects of Sn-Cu-Bi/Cu solder joint [J]. J. Mater. Res. Technol., 2021, 15: 3321
doi: 10.1016/j.jmrt.2021.10.015
|
55 |
Albrecht H J, Bartl K H G, Kruppa W, et al. Soldering material based on Sn Ag and Cu [P]. US Pat, 10376994B2, 2019
|
56 |
Tao Q B, Benabou L, Nguyen Van T A, et al. Isothermal aging and shear creep behavior of a novel lead-free solder joint with small additions of Bi, Sb and Ni [J]. J. Alloys Compd., 2019, 789: 183
doi: 10.1016/j.jallcom.2019.02.316
|
57 |
Zhong Y, Liu W, Wang C Q, et al. The influence of strengthening and recrystallization to the cracking behavior of Ni, Sb, Bi alloyed SnAgCu solder during thermal cycling [J]. Mater. Sci. Eng., 2016, A652: 264
|
58 |
Zhu T K, Zhang Q K, Bai H L, et al. Investigations on deformation and fracture behaviors of the multi-alloyed SnAgCu solder and solder joint by in-situ observation [J]. Microelectron. Reliab., 2022, 135: 114574
doi: 10.1016/j.microrel.2022.114574
|
59 |
Lee N C, Geng J, Zhang H W, et al. Novel solder alloy with wide service temperature capability for automotive applications [A]. 2018 IEEE 68th Electronic Components and Technology Conference [C]. San Diego: IEEE, 2018: 2336
|
60 |
Zhang L, Tu K N. Structure and properties of lead-free solders bearing micro and Nano particles [J]. Mater. Sci. Eng., 2014, R82: 1
|
61 |
Kanlayasiri K, Mongkolwongrojn M, Ariga T. Influence of indium addition on characteristics of Sn-0.3Ag-0.7Cu solder alloy [J]. J. Alloys Compd., 2009, 485: 225
doi: 10.1016/j.jallcom.2009.06.020
|
62 |
Mehreen S U, Nogita K, Mcdonald S D, et al. Effect of Ni, Zn, Au, Sb and In on the suppression of the Cu3Sn phase in Sn-10 wt.%Cu alloys [J]. J. Electron. Mater., 2021, 50: 881
doi: 10.1007/s11664-020-08709-3
|
63 |
Tikale S, Prabhu K N. Development of low-silver content SAC0307 solder alloy with Al2O3 nanoparticles [J]. Mater. Sci. Eng., 2020, A787: 139439
|
64 |
Huo F P, Jin Z, Le Han D, et al. Interface design and the strengthening-ductility behavior of tetra-needle-like ZnO whisker reinforced Sn1.0Ag0.5Cu composite solders prepared with ultrasonic agitation [J]. Mater. Des., 2021, 210: 110038
doi: 10.1016/j.matdes.2021.110038
|
65 |
Yin L M, Zhang Z W, Su Z L, et al. Interfacial microstructure evolution and properties of Sn-0.3Ag-0.7Cu-xSiC solder joints [J]. Mater. Sci. Eng., 2021, A809: 140995
|
66 |
Li Z H, Tang Y, Guo Q W, et al. Effects of CeO2 nanoparticles addition on shear properties of low-silver Sn-0.3Ag-0.7Cu-xCeO2 solder alloys [J]. J. Alloys Compd., 2019, 789: 150
doi: 10.1016/j.jallcom.2019.03.013
|
67 |
Dele-Afolabi T T, Azmah Hanim M A, Ojo-Kupoluyi O J, et al. Impact of different isothermal aging conditions on the IMC layer growth and shear strength of MWCNT-reinforced Sn-5Sb solder composites on Cu substrate [J]. J. Alloys Compd., 2019, 808: 151714
doi: 10.1016/j.jallcom.2019.151714
|
68 |
Vidyatharran K, Azmah Hanim M A, Dele-Afolabi T T, et al. Microstructural and shear strength properties of GNSs-reinforced Sn-1.0Ag-0.5Cu (SAC105) composite solder interconnects on plain Cu and ENIAg surface finish [J]. J. Mater. Res. Technol., 2021, 15: 2497
doi: 10.1016/j.jmrt.2021.09.067
|
69 |
Jung D H, Sharma A, Jung J P. Influence of dual ceramic nanomaterials on the solderability and interfacial reactions between lead-free Sn-Ag-Cu and a Cu conductor [J]. J. Alloys Compd., 2018, 743: 300
doi: 10.1016/j.jallcom.2018.02.017
|
70 |
Mo L P, Hu S C, Zhou Z, et al. Wettability and shear strength of SAC305 based composite solder with co-doping X (Ni or Al2O3) and CNTs reinforcements [A]. 19th International Conference on Electronic Packaging Technology [C]. Shanghai: IEEE, 2018: 1415
|
71 |
Yao P, Liu P, Liu J. Effects of multiple reflows on intermetallic morphology and shear strength of SnAgCu-xNi composite solder joints on electrolytic Ni/Au metallized substrate [J]. J. Alloys Compd., 2008, 462: 73
doi: 10.1016/j.jallcom.2007.08.041
|
72 |
Sun H Y, Chan Y C, Wu F S. Effect of CNTs and Ni coated CNTs on the mechanical performance of Sn57.6Bi0.4Ag BGA solder joints [J]. Mater. Sci. Eng., 2016, A656: 249
|
73 |
Khodabakhshi F, Zareghomsheh M, Khatibi G. Nanoindentation creep properties of lead-free nanocomposite solders reinforced by modified carbon nanotubes [J]. Mater. Sci. Eng., 2020, A797: 140203
|
74 |
Sayyadi R, Khodabakhshi F, Javid N S, et al. Influence of graphene content and nickel decoration on the microstructural and mechanical characteristics of the Cu/Sn-Ag-Cu/Cu soldered joint [J]. J. Mater. Res. Technol., 2020, 9: 8953
doi: 10.1016/j.jmrt.2020.06.026
|
75 |
Pal M K, Gergely G, Koncz-Horváth D, et al. Investigation of the electroless nickel plated sic particles in SAC305 solder matrix [J]. Powder Metall. Met. Ceram., 2020, 58: 529
doi: 10.1007/s11106-020-00107-y
|
76 |
Gain A K, Chan Y C. The influence of a small amount of Al and Ni nano-particles on the microstructure, kinetics and hardness of Sn-Ag-Cu solder on OSP-Cu pads [J]. Intermetallics, 2012, 29: 48
doi: 10.1016/j.intermet.2012.04.019
|
77 |
Yakymovych A, Švec P, Orovcik L, et al. Nanocomposite SAC solders: The effect of adding Ni and Ni-Sn nanoparticles on morphology and mechanical properties of Sn-3.0Ag-0.5Cu solders [J]. J. Electron. Mater., 2018, 47: 117
doi: 10.1007/s11664-017-5834-9
|
78 |
Lai Y Q, Hu X W, Jiang X X, et al. Effect of Ni addition to Sn0.7Cu solder alloy on thermal behavior, microstructure, and mechanical properties [J]. J. Mater. Eng. Perform., 2018, 27: 6564
doi: 10.1007/s11665-018-3734-7
|
79 |
Gain A K, Zhang L C. Effects of Ni nanoparticles addition on the microstructure, electrical and mechanical properties of Sn-Ag-Cu alloy [J]. Materialia, 2019, 5: 100234
doi: 10.1016/j.mtla.2019.100234
|
80 |
Kim J, Jung K H, Kim J H, et al. Electromigration behaviors of Sn58%Bi solder containing Ag-coated MWCNTs with OSP surface finished PCB [J]. J. Alloys Compd., 2019, 775: 581
doi: 10.1016/j.jallcom.2018.10.028
|
81 |
Wang H G, Zhang K K, Zhang M. Fabrication and properties of Ni-modified graphene nanosheets reinforced Sn-Ag-Cu composite solder [J]. J. Alloys Compd., 2019, 781: 761
doi: 10.1016/j.jallcom.2018.12.080
|
82 |
Park H J, Lee C J, Min K D, et al. Microstructures and mechanical properties of the Sn58wt.%Bi composite solders with Sn decorated MWCNT particles [J]. J. Electron. Mater., 2019, 48: 1746
doi: 10.1007/s11664-018-06882-0
|
83 |
Lee C J, Min K D, Park H J, et al. Effect of Sn-decorated MWCNTs on the mechanical reliability of Sn-58Bi solder [J]. Electron. Mater. Lett., 2019, 15: 693
doi: 10.1007/s13391-019-00176-1
|
84 |
Sharma A, Srivastava A K, Ahn B. Microstructure, wetting, and tensile behaviors of Sn-Ag alloy reinforced with copper-coated carbon nanofibers produced by the melting and casting route [J]. Metall. Mater. Trans., 2019, 50A: 5384
|
85 |
Han Y D, Nai S M L, Jing H Y, et al. Development of a Sn-Ag-Cu solder reinforced with Ni-coated carbon nanotubes [J]. J. Mater. Sci.: Mater. Electron., 2011, 22: 315
doi: 10.1007/s10854-010-0135-6
|
86 |
Yang Z B, Zhou W, Wu P. Effects of Ni-coated carbon nanotubes addition on the microstructure and mechanical properties of Sn-Ag-Cu solder alloys [J]. Mater. Sci. Eng., 2014, A590: 295
|
87 |
Qu M, Gao Z X, Chen J, et al. Effect of Ni-coated carbon nanotubes addition on the wettability, microhardness, and shear strength of Sn-3.0Ag-0.5Cu/Cu lead-free solder joints [J]. J. Mater. Sci.: Mater. Electron., 2022, 33: 10866
doi: 10.1007/s10854-022-08067-2
|
88 |
Yang L Z, Zhou W, Liang Y H, et al. Improved microstructure and mechanical properties for Sn58Bi solder alloy by addition of Ni-coated carbon nanotubes [J]. Mater. Sci. Eng., 2015, A642: 7
|
89 |
Lee C J, Hwang B U, Min K D, et al. Bending reliability of Ni-MWCNT composite solder with a differential structure [J]. Microelectron. Reliab., 2020, 113: 113934
doi: 10.1016/j.microrel.2020.113934
|
90 |
Lee C J, Min K D, Jeong H, et al. The fabrication of Ni-MWCNT composite solder and its reliability under high relative humidity and temperature [J]. J. Electron. Mater., 2020, 49: 6746
doi: 10.1007/s11664-020-08426-x
|
91 |
Mao J, Yang W C, Song Q Q, et al. The effects of the addition of CNT@Ni on the hardness, density, wettability and mechanical properties of Sn-0.7Cu lead-free solder [J]. J. Mater. Sci.: Mater. Electron., 2021, 32: 10843
doi: 10.1007/s10854-021-05742-8
|
92 |
Chantaramanee S, Wisutmethangoon S, Sikong L, et al. Development of a lead-free composite solder from Sn-Ag-Cu and Ag-coated carbon nanotubes [J]. J. Mater. Sci.: Mater. Electron., 2013, 24: 3707
doi: 10.1007/s10854-013-1307-y
|
93 |
Min K D, Lee C J, Park H J, et al. Microstructures and mechanical properties of Sn-58wt.% Bi solder with Ag-decorated multiwalled carbon nanotubes under 85oC/85% relative humidity environmental conditions [J]. J. Electron. Mater., 2020, 49: 1527
doi: 10.1007/s11664-019-07863-7
|
94 |
Lee C J, Min K D, Park H J, et al. Mechanical properties of Sn-58wt%Bi solder containing Ag-decorated MWCNT with thermal aging tests [J]. J. Alloys Compd., 2020, 820: 153077
doi: 10.1016/j.jallcom.2019.153077
|
95 |
Lee C J, Myung W R, Park B G, et al. Effect of Ag-decorated MWCNT on the mechanical and thermal property of Sn58Bi solder joints for FCLED package [J]. J. Mater. Sci.: Mater. Electron., 2020, 31: 10170
doi: 10.1007/s10854-020-03562-w
|
96 |
Xu L Y, Chen X, Jing H Y, et al. Design and performance of Ag nanoparticle-modified graphene/SnAgCu lead-free solders [J]. Mater. Sci. Eng., 2016, A667: 87
|
97 |
Dele-Afolabi T T, Hanim M A A, Calin R, et al. Microstructure evolution and hardness of MWCNT-reinforced Sn-5Sb/Cu composite solder joints under different thermal aging conditions [J]. Microelectron. Reliab., 2020, 110: 113681
doi: 10.1016/j.microrel.2020.113681
|
98 |
Sun R, Sui Y W, Qi J Q, et al. Influence of SnO2 nanoparticles addition on microstructure, thermal analysis, and interfacial IMC growth of Sn1.0Ag0.7Cu solder [J]. J. Electron. Mater., 2017, 46: 4197
doi: 10.1007/s11664-017-5374-3
|
99 |
Yassin A M, Zahran H Y, Abd El-Rehim A F. Effect of TiO2 nanoparticles addition on the thermal, microstructural and room-temperature creep behavior of Sn-Zn based solder [J]. J. Electron. Mater., 2018, 47: 6984
doi: 10.1007/s11664-018-6624-8
|
100 |
Choi K, Yu D Y, Ahn S, et al. Joint reliability of various Pb-free solders under harsh vibration conditions for automotive electronics [J]. Microelectron. Reliab., 2018, 86: 66
doi: 10.1016/j.microrel.2018.05.006
|
101 |
Wang Y, Zhao X C, Liu Y, et al. Microstructure, wetting property of Sn-Ag-Cu-Bi-xCe solder and IMC growth at solder/Cu interface during thermal cycling [J]. Rare Met., 2021, 40: 714
doi: 10.1007/s12598-015-0526-1
|
102 |
Wu C M L, Yu D Q, Law C M T, et al. Properties of lead-free solder alloys with rare earth element additions [J]. Mater. Sci. Eng., 2004, R44: 1
|
103 |
Wu J, Xue S B, Wang J W, et al. Effect of Pr addition on properties and Sn whisker growth of Sn-0.3Ag-0.7Cu low-Ag solder for electronic packaging [J]. J. Mater. Sci.: Mater. Electron., 2017, 28: 10230
doi: 10.1007/s10854-017-6790-0
|
104 |
Zhang L, Yang F, Zhong S J. Effect of Nd on whiskers growth behavior of SnAgCu solders in electronic packaging [J]. J. Mater. Sci.: Mater. Electron., 2016, 27: 9584
doi: 10.1007/s10854-016-5012-5
|
105 |
Xue P, He P, Long W M, et al. Influence of rare earths, Ga element and their synergistic effects on the microstructure and properties of lead-free solders [J]. Trans. China Weld. Inst., 2021, 42(4): 1
|
105 |
薛 鹏, 何 鹏, 龙伟民 等. 稀土、Ga元素及其协同效应对无铅钎料组织和性能的影响 [J]. 焊接学报, 2021, 42(4): 1
|
106 |
Wu J, Xue S B, Wang J W, et al. Coupling effects of rare-earth Pr and Al2O3 nanoparticles on the microstructure and properties of Sn-0.3Ag-0.7Cu low-Ag solder [J]. J. Alloys Compd., 2019, 784: 471
doi: 10.1016/j.jallcom.2019.01.034
|
107 |
Wu J, Xue S B, Huang G Q, et al. In-situ synergistic effect of Pr and Al2O3 nanoparticles on enhancing thermal cycling reliability of Sn-0.3Ag-0.7Cu/Cu solder joint [J]. J. Alloys Compd., 2022, 905: 164152
doi: 10.1016/j.jallcom.2022.164152
|
108 |
Wu J, Xue S B, Wang J W, et al. Effect of in-situ formed Pr-coated Al2O3 nanoparticles on interfacial microstructure and shear behavior of Sn-0.3Ag-0.7Cu-0.06Pr/Cu solder joints during isothermal aging [J]. J. Alloys Compd., 2019, 799: 124
doi: 10.1016/j.jallcom.2019.05.226
|
109 |
El-Daly A A, Eid N A M, Ibrahiem A A. Synergic effect of Te, Ni and MWCNT on creep behavior and microstructural evolution of Sn-1.0Ag-0.7Cu low-Ag solder [J]. J. Alloys Compd., 2022, 902: 163808
doi: 10.1016/j.jallcom.2022.163808
|
110 |
El-Daly A A, Ibrahiem A A, Eid N A M. Development of Sn-1.0Ag-0.7Cu composite solder with improved resistivity and strength-ductility synergy through additions of Ni, Te and MWCNT [J]. J. Mater. Sci.: Mater. Electron., 2021, 32: 19871
doi: 10.1007/s10854-021-06512-2
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|