|
|
Fe76Ga5Ge5B6P7Cu1 合金的非等温晶化动力学 |
郭璐1,2, 朱乾科1,2( ), 陈哲1,2, 张克维1,2( ), 姜勇1,2 |
1.太原科技大学 材料科学与工程学院 太原 030024 2.太原科技大学 磁电功能材料及应用山西省重点实验室 太原 030024 |
|
Non-Isothermal Crystallization Kinetics of Fe76Ga5Ge5B6P7Cu1 Alloy |
GUO Lu1,2, ZHU Qianke1,2( ), CHEN Zhe1,2, ZHANG Kewei1,2( ), JIANG Yong1,2 |
1.School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China 2.Shanxi Province Key Laboratory of Magnetic and Electric Functional Materials and Their Applications, Taiyuan University of Science and Technology, Taiyuan 030024, China |
引用本文:
郭璐, 朱乾科, 陈哲, 张克维, 姜勇. Fe76Ga5Ge5B6P7Cu1 合金的非等温晶化动力学[J]. 金属学报, 2022, 58(6): 799-806.
Lu GUO,
Qianke ZHU,
Zhe CHEN,
Kewei ZHANG,
Yong JIANG.
Non-Isothermal Crystallization Kinetics of Fe76Ga5Ge5B6P7Cu1 Alloy[J]. Acta Metall Sin, 2022, 58(6): 799-806.
1 |
Yoshizawa Y, Yamauchi K. Fe-based soft magnetic alloys composed of ultrafine grain structure [J]. Mater. Trans. JIM, 1990, 31: 307
|
2 |
Makino A. Nanocrystalline soft magnetic Fe-Si-B-P-Cu alloys with high B of 1.8-1.9 T contributable to energy saving [J]. IEEE Trans. Magn., 2012, 48: 1331
|
3 |
Yoshizawa Y, Oguma S, Yamauchi K. New Fe-based soft magnetic alloys composed of ultrafine grain structure [J]. J. Appl. Phys., 1988, 64: 6044
doi: 10.1063/1.342149
|
4 |
Fukamichi K, Satoh T, Masumoto T. Magnetic moment of Fe-Ga-B amorphous Alloys [J]. J. Magn. Magn. Mater., 1983, 31-34: 1589
doi: 10.1016/0304-8853(83)91027-2
|
5 |
Zhu Q K, Chen Z, Li Q S, et al. Microstructure and phase dependence of magnetic softness of FeSiGaB nanocrystalline alloys [J]. J. Magn. Magn. Mater., 2021, 528: 167802
doi: 10.1016/j.jmmm.2021.167802
|
6 |
Sharma P, Zhang X, Zhang Y, et al. Competition driven nanocrystallization in high Bs and low coreloss Fe-Si-B-P-Cu soft magnetic alloys [J]. Scr. Mater., 2015, 95: 3
doi: 10.1016/j.scriptamat.2014.08.023
|
7 |
Zhang J H, Wan F P, Li Y C, et al. Effect of surface crystallization on magnetic properties of Fe82Cu1Si4B11.5Nb1.5 nanocrystalline alloy ribbons [J]. J. Magn. Magn. Mater., 2017, 438: 126
doi: 10.1016/j.jmmm.2017.04.086
|
8 |
Li H, Wang A D, Liu T, et al. Design of Fe-based nanocrystalline alloys with superior magnetization and manufacturability [J]. Mater. Today, 2021, 42: 49
doi: 10.1016/j.mattod.2020.09.030
|
9 |
Chen Z, Zhu Q K, Li Z E, et al. Effects of Si/B ratio on the isothermal crystallization behavior of FeNiSiBCuNb amorphous alloys [J]. Thermochim. Acta, 2021, 697: 178854
doi: 10.1016/j.tca.2020.178854
|
10 |
Zhang J T, Wang W M, Ma H J, et al. Isochronal and isothermal crystallization kinetics of amorphous Fe-based alloys [J]. Thermochim. Acta, 2010, 505: 41
doi: 10.1016/j.tca.2010.03.023
|
11 |
Henderson D W. Thermal analysis of non-isothermal crystallization kinetics in glass forming liquids [J]. J. Non-Cryst. Solids, 1979, 30: 301
doi: 10.1016/0022-3093(79)90169-8
|
12 |
Pratap A, Lad K N, Rao T L S, et al. Kinetics of crystallization of amorphous Cu50Ti50 alloy [J]. J. Non-Cryst. Solids, 2004, 345-346: 178
doi: 10.1016/j.jnoncrysol.2004.08.018
|
13 |
Jin J S, Li F W, Yin G, et al. Influence of substitution of Cu by Ni on the crystallization kinetics of TiZrHfBeCu high entropy bulk metallic glass [J]. Thermochim. Acta, 2020, 690: 178650
doi: 10.1016/j.tca.2020.178650
|
14 |
Paul T, Loganathan A, Agarwal A, et al. Kinetics of isochronal crystallization in a Fe-based amorphous alloy [J]. J. Alloys Compd., 2018, 753: 679
doi: 10.1016/j.jallcom.2018.04.133
|
15 |
Dong Q, Song P, Tan J, et al. Non-isothermal crystallization kinetics of a Fe-Cr-Mo-B-C amorphous powder [J]. J. Alloys Compd., 2020, 823: 153783
doi: 10.1016/j.jallcom.2020.153783
|
16 |
Zhu Q K, Chen Z, Zhang S L, et al. Improving soft magnetic properties in FINEMET-like alloys with Ga addition [J]. J. Magn. Magn. Mater., 2019, 487: 165297
doi: 10.1016/j.jmmm.2019.165297
|
17 |
Fan X D, Jiang M F, Zhang T, et al. Thermal, structural and soft magnetic properties of FeSiBPCCu alloys [J]. J. Non-Cryst. Solids, 2020, 533: 119941
doi: 10.1016/j.jnoncrysol.2020.119941
|
18 |
Chen F G, Wang Y G. Investigation of glass forming ability, thermal stability and soft magnetic properties of melt-spun Fe83P16 - x Si x -Cu1 (x = 0, 1, 2, 3, 4, 5) alloy ribbons [J]. J. Alloys Compd., 2014, 584: 377
doi: 10.1016/j.jallcom.2013.09.089
|
19 |
Lopatina E, Soldatov I, Budinsky V, et al. Surface crystallization and magnetic properties of Fe84.3Cu0.7Si4B8P3 soft magnetic ribbons [J]. Acta Mater., 2015, 96: 10
doi: 10.1016/j.actamat.2015.05.051
|
20 |
Kong L H, Gao Y L, Song T T, et al. Non-isothermal crystallization kinetics of FeZrB amorphous alloy [J]. Thermochim. Acta, 2011, 522: 166
doi: 10.1016/j.tca.2011.02.013
|
21 |
Zhu Q K, Chen Z, Zhang S L, et al. Crystallization progress and soft magnetic properties of FeGaBNbCu alloys [J]. J. Magn. Magn. Mater., 2019, 475: 88
doi: 10.1016/j.jmmm.2018.11.105
|
22 |
Li W, Xie C X, Liu H Y, et al. Minor-metalloid substitution for Fe on glass formation and soft magnetic properties of Fe-Co-Si-B-P-Cu alloys [J]. J. Non-Cryst. Solids, 2020, 533: 119937
doi: 10.1016/j.jnoncrysol.2020.119937
|
23 |
Wang R W, Liu J, Xu Y P, et al. Effect of V substitution for Nb on the crystallization kinetics of FINEMET amorphous alloys [J]. J. Funct. Mater., 2010, 12: 2109
|
23 |
汪汝武, 刘 静, 徐勇攀 等. V替代Nb对FINEMET非晶合金结晶动力学的影响 [J]. 功能材料, 2010, 12: 2109
|
24 |
Lasocka M. The effect of scanning rate on glass transition temperature of splat-cooled Te85Ge15 [J]. Mater. Sci. Eng., 1976, 23: 173
doi: 10.1016/0025-5416(76)90189-0
|
25 |
Kissinger H E. Reaction kinetics in differential thermal analysis [J]. Anal. Chem., 1957, 29: 1702
doi: 10.1021/ac60131a045
|
26 |
Ozawa T. Kinetic analysis of derivative curves in thermal analysis [J]. J. Therm. Anal., 1970, 2: 301
doi: 10.1007/BF01911411
|
27 |
Nakamura K, Katayama K, Amano T. Some aspects of nonisothermal crystallization of polymers. II. Consideration of the isokinetic condition [J]. J. Appl. Polym. Sci., 1973, 17: 1031
doi: 10.1002/app.1973.070170404
|
28 |
Blázquez J S, Conde C F, Conde A. Non-isothermal approach to isokinetic crystallization processes: Application to the nanocrystallization of HITPERM alloys [J]. Acta Mater., 2005, 53: 2305
doi: 10.1016/j.actamat.2005.01.037
|
29 |
Chen Z, Zhu Q K, Zhang K W, et al. The non-isothermal and isothermal crystallization behavior and mechanism of Fe-Ni Alloys [J]. Cryst. Growth Des., 2020, 20: 2187
doi: 10.1021/acs.cgd.9b01059
|
30 |
Duarte M J, Kostka A, Crespo D, et al. Kinetics and crystallization path of a Fe-based metallic glass alloy [J]. Acta Mater., 2017, 127: 341
doi: 10.1016/j.actamat.2017.01.031
|
31 |
Herzer G. Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets [J]. IEEE Trans. Magn., 1990, 26(5): 1397
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|