Please wait a minute...
金属学报  2022, Vol. 58 Issue (6): 799-806    DOI: 10.11900/0412.1961.2021.00287
  研究论文 本期目录 | 过刊浏览 |
Fe76Ga5Ge5B6P7Cu1 合金的非等温晶化动力学
郭璐1,2, 朱乾科1,2(), 陈哲1,2, 张克维1,2(), 姜勇1,2
1.太原科技大学 材料科学与工程学院 太原 030024
2.太原科技大学 磁电功能材料及应用山西省重点实验室 太原 030024
Non-Isothermal Crystallization Kinetics of Fe76Ga5Ge5B6P7Cu1 Alloy
GUO Lu1,2, ZHU Qianke1,2(), CHEN Zhe1,2, ZHANG Kewei1,2(), JIANG Yong1,2
1.School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
2.Shanxi Province Key Laboratory of Magnetic and Electric Functional Materials and Their Applications, Taiyuan University of Science and Technology, Taiyuan 030024, China
引用本文:

郭璐, 朱乾科, 陈哲, 张克维, 姜勇. Fe76Ga5Ge5B6P7Cu1 合金的非等温晶化动力学[J]. 金属学报, 2022, 58(6): 799-806.
Lu GUO, Qianke ZHU, Zhe CHEN, Kewei ZHANG, Yong JIANG. Non-Isothermal Crystallization Kinetics of Fe76Ga5Ge5B6P7Cu1 Alloy[J]. Acta Metall Sin, 2022, 58(6): 799-806.

全文: PDF(1793 KB)   HTML
摘要: 

采用单辊旋淬法制备了Fe76Ga5Ge5B6P7Cu1带材,并研究了其晶化行为和机理。结果表明Fe76Ga5Ge5B6-P7Cu1合金的晶化过程分为2个阶段,第1个阶段为α-Fe(Ga, Ge)相的析出,第2个阶段为Fe(B, P)硬磁相的析出。在非等温加热的情况下,初始表观激活能大于晶化表观激活能。根据Johnson-Mehl-Avrami-Kolmogorov (JMAK)方程得出,对于非完全非晶结构的合金,其晶化过程为预先存在的晶核或团簇不断长大,同时伴随着新的晶核不断析出且形核率不断下降。此外,快速升温的退火工艺更适合形成均匀弥散的纳米晶组织。通过实验验证,退火时升温速率为100 K/min的合金软磁性能优于升温速率为10和50 K/min的合金,其最优起始磁导率为2.86 × 10-2 H/m,矫顽力为1.77 A/m。

关键词 非等温晶化动力学α-Fe(Ga, Ge)JMAK方程Avrami指数矫顽力    
Abstract

Fe-based amorphous and nanocrystalline alloys can be used for technological applications on iron core materials owing to their high permeability, low coercivity, and core loss. However, when compared to Si-steels, their application is limited owing to low saturation magnetization. Thus, the saturation magnetization of Fe-based amorphous and nanocrystalline alloys should be improved, which may reduce the content of metalloid elements, and thus, the amorphous forming ability. Consequently, as-spun Fe-based amorphous and nanocrystalline alloys with high saturation magnetization may be incompletely amorphous. In this case, annealing processes should be modified by investigating crystallization behavior because traditional annealing processes with low heating rates may degrade ferromagnetic exchange and soft magnetic properties owing to grain-size inhomogeneity. Fe76Ga5Ge5B6P7Cu1 ribbons were fabricated using the melt spinning technique, and their crystallization behavior and mechanism were studied. Results showed that two exothermic peaks are present in the DSC curve, which correspond to the precipitation of α-Fe(Ga, Ge) and Fe(B, P) phases. Under nonisothermal conditions, the initial activation energy is greater than the apparent activation energy. According to the Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation, for an incomplete amorphous alloy, the crystallization process combines the growth of pre-existing nucleus and nucleation, whereas the nucleation rate decreases. Moreover, a rapid heating annealing process is conducive to the formation of a uniform and dispersed nanocrystalline structure. It was found that the magnetic properties of the annealed alloy with a heating rate of 100 K/min was better than those with 10 and 50 K/min. Further, the optimal initial permeability was 2.86 × 10-2 H/m, and the coercivity was 1.77 A/m.

Key wordsnon-isothermal crystallization kinetics    α-Fe(Ga, Ge)    JMAK equation    Avrami index    coercivity
收稿日期: 2021-07-12     
ZTFLH:  TM271  
基金资助:山西省回国留学人员科研教研项目(HGKY2019083);山西省重点研发计划(国际合作)项目(201803D421046);山西省高等学校科技创新项目(2021L293);来晋工作优秀博士奖励资金项目(20212045);太原科技大学博士启动金项目(20202034)
作者简介: 张克维, drzkw@126.com,主要从事磁性功能材料研究朱乾科, drzhuqianke@126.com,主要从事磁性功能材料研究
郭 璐,女,1989年生,博士生
图1  淬态Fe76Ga5Ge5B6P7Cu1合金的XRD谱,在不同加热速率下的DSC曲线、特征温度(Tx1、Tp1、Tx2、Tp2)随lnβ (β为加热速率)变化的拟合曲线,以及Fe76Ga5Ge5B6P7Cu1合金不同温度退火后的XRD谱
β / (K·min-1)Tx1Tp1Tx2Tp2
5660.65676.23793.98803.09
15678.44693.66809.30819.64
25684.49702.11816.33826.43
35689.04708.41820.63832.22
表1  淬态Fe76Ga5Ge5B6P7Cu1在不同加热速率下的特征温度 (K)
图2  淬态Fe76Ga5Ge5B6P7Cu1合金采用Kissinger和Ozawa方程的拟合图
图3  在不同的加热速率下第1个峰和第2个峰晶化体积分数(α)随温度的变化
图4  第1个峰和第2个峰的Avrami指数(n)随α的变化
β / (K·min-1)αnabp
50 ≤ α ≤ 0.41.5 < n < 2.50 < a < 130.5
0.4 < α ≤ 1n ≤ 1.5a = 030.5
15, 250 ≤ α ≤ 0.21.5 < n < 2.50 < a < 130.5
0.2 < α ≤ 1n ≤ 1.5a = 030.5
350 ≤ α ≤ 0.11.5 < n < 2.50 < a < 130.5
0.1 < α ≤ 1n ≤ 1.5a = 030.5
表2  第1个峰晶化机理的表征参数
β / (K·min-1)αnabp
50 ≤ α ≤ 0.81.5 < n < 2.50 < a < 130.5
0.8 < α ≤ 1n ≤ 1.5a = 030.5
150 ≤ α ≤ 0.51.5 < n < 2.50 < a < 130.5
0.5 < α ≤ 1n ≤ 1.5a = 030.5
25, 350 ≤ α ≤ 0.31.5 < n < 2.50 < a < 130.5
0.3 < α ≤ 1n ≤ 1.5a = 030.5
表3  第2个峰晶化机理的表征参数
图5  不同升温速率下起始磁导率(μi)和矫顽力(Hc)随退火温度的变化
图6  升温速率10 K/min、退火温度400℃和升温速率100 K/min、退火温度425℃时Fe76Ga5Ge5B6P7Cu1合金退火后的TEM像、SAED花样和晶粒尺寸分布及晶化示意图
1 Yoshizawa Y, Yamauchi K. Fe-based soft magnetic alloys composed of ultrafine grain structure [J]. Mater. Trans. JIM, 1990, 31: 307
2 Makino A. Nanocrystalline soft magnetic Fe-Si-B-P-Cu alloys with high B of 1.8-1.9 T contributable to energy saving [J]. IEEE Trans. Magn., 2012, 48: 1331
3 Yoshizawa Y, Oguma S, Yamauchi K. New Fe-based soft magnetic alloys composed of ultrafine grain structure [J]. J. Appl. Phys., 1988, 64: 6044
doi: 10.1063/1.342149
4 Fukamichi K, Satoh T, Masumoto T. Magnetic moment of Fe-Ga-B amorphous Alloys [J]. J. Magn. Magn. Mater., 1983, 31-34: 1589
doi: 10.1016/0304-8853(83)91027-2
5 Zhu Q K, Chen Z, Li Q S, et al. Microstructure and phase dependence of magnetic softness of FeSiGaB nanocrystalline alloys [J]. J. Magn. Magn. Mater., 2021, 528: 167802
doi: 10.1016/j.jmmm.2021.167802
6 Sharma P, Zhang X, Zhang Y, et al. Competition driven nanocrystallization in high Bs and low coreloss Fe-Si-B-P-Cu soft magnetic alloys [J]. Scr. Mater., 2015, 95: 3
doi: 10.1016/j.scriptamat.2014.08.023
7 Zhang J H, Wan F P, Li Y C, et al. Effect of surface crystallization on magnetic properties of Fe82Cu1Si4B11.5Nb1.5 nanocrystalline alloy ribbons [J]. J. Magn. Magn. Mater., 2017, 438: 126
doi: 10.1016/j.jmmm.2017.04.086
8 Li H, Wang A D, Liu T, et al. Design of Fe-based nanocrystalline alloys with superior magnetization and manufacturability [J]. Mater. Today, 2021, 42: 49
doi: 10.1016/j.mattod.2020.09.030
9 Chen Z, Zhu Q K, Li Z E, et al. Effects of Si/B ratio on the isothermal crystallization behavior of FeNiSiBCuNb amorphous alloys [J]. Thermochim. Acta, 2021, 697: 178854
doi: 10.1016/j.tca.2020.178854
10 Zhang J T, Wang W M, Ma H J, et al. Isochronal and isothermal crystallization kinetics of amorphous Fe-based alloys [J]. Thermochim. Acta, 2010, 505: 41
doi: 10.1016/j.tca.2010.03.023
11 Henderson D W. Thermal analysis of non-isothermal crystallization kinetics in glass forming liquids [J]. J. Non-Cryst. Solids, 1979, 30: 301
doi: 10.1016/0022-3093(79)90169-8
12 Pratap A, Lad K N, Rao T L S, et al. Kinetics of crystallization of amorphous Cu50Ti50 alloy [J]. J. Non-Cryst. Solids, 2004, 345-346: 178
doi: 10.1016/j.jnoncrysol.2004.08.018
13 Jin J S, Li F W, Yin G, et al. Influence of substitution of Cu by Ni on the crystallization kinetics of TiZrHfBeCu high entropy bulk metallic glass [J]. Thermochim. Acta, 2020, 690: 178650
doi: 10.1016/j.tca.2020.178650
14 Paul T, Loganathan A, Agarwal A, et al. Kinetics of isochronal crystallization in a Fe-based amorphous alloy [J]. J. Alloys Compd., 2018, 753: 679
doi: 10.1016/j.jallcom.2018.04.133
15 Dong Q, Song P, Tan J, et al. Non-isothermal crystallization kinetics of a Fe-Cr-Mo-B-C amorphous powder [J]. J. Alloys Compd., 2020, 823: 153783
doi: 10.1016/j.jallcom.2020.153783
16 Zhu Q K, Chen Z, Zhang S L, et al. Improving soft magnetic properties in FINEMET-like alloys with Ga addition [J]. J. Magn. Magn. Mater., 2019, 487: 165297
doi: 10.1016/j.jmmm.2019.165297
17 Fan X D, Jiang M F, Zhang T, et al. Thermal, structural and soft magnetic properties of FeSiBPCCu alloys [J]. J. Non-Cryst. Solids, 2020, 533: 119941
doi: 10.1016/j.jnoncrysol.2020.119941
18 Chen F G, Wang Y G. Investigation of glass forming ability, thermal stability and soft magnetic properties of melt-spun Fe83P16 - x Si x -Cu1 (x = 0, 1, 2, 3, 4, 5) alloy ribbons [J]. J. Alloys Compd., 2014, 584: 377
doi: 10.1016/j.jallcom.2013.09.089
19 Lopatina E, Soldatov I, Budinsky V, et al. Surface crystallization and magnetic properties of Fe84.3Cu0.7Si4B8P3 soft magnetic ribbons [J]. Acta Mater., 2015, 96: 10
doi: 10.1016/j.actamat.2015.05.051
20 Kong L H, Gao Y L, Song T T, et al. Non-isothermal crystallization kinetics of FeZrB amorphous alloy [J]. Thermochim. Acta, 2011, 522: 166
doi: 10.1016/j.tca.2011.02.013
21 Zhu Q K, Chen Z, Zhang S L, et al. Crystallization progress and soft magnetic properties of FeGaBNbCu alloys [J]. J. Magn. Magn. Mater., 2019, 475: 88
doi: 10.1016/j.jmmm.2018.11.105
22 Li W, Xie C X, Liu H Y, et al. Minor-metalloid substitution for Fe on glass formation and soft magnetic properties of Fe-Co-Si-B-P-Cu alloys [J]. J. Non-Cryst. Solids, 2020, 533: 119937
doi: 10.1016/j.jnoncrysol.2020.119937
23 Wang R W, Liu J, Xu Y P, et al. Effect of V substitution for Nb on the crystallization kinetics of FINEMET amorphous alloys [J]. J. Funct. Mater., 2010, 12: 2109
23 汪汝武, 刘 静, 徐勇攀 等. V替代Nb对FINEMET非晶合金结晶动力学的影响 [J]. 功能材料, 2010, 12: 2109
24 Lasocka M. The effect of scanning rate on glass transition temperature of splat-cooled Te85Ge15 [J]. Mater. Sci. Eng., 1976, 23: 173
doi: 10.1016/0025-5416(76)90189-0
25 Kissinger H E. Reaction kinetics in differential thermal analysis [J]. Anal. Chem., 1957, 29: 1702
doi: 10.1021/ac60131a045
26 Ozawa T. Kinetic analysis of derivative curves in thermal analysis [J]. J. Therm. Anal., 1970, 2: 301
doi: 10.1007/BF01911411
27 Nakamura K, Katayama K, Amano T. Some aspects of nonisothermal crystallization of polymers. II. Consideration of the isokinetic condition [J]. J. Appl. Polym. Sci., 1973, 17: 1031
doi: 10.1002/app.1973.070170404
28 Blázquez J S, Conde C F, Conde A. Non-isothermal approach to isokinetic crystallization processes: Application to the nanocrystallization of HITPERM alloys [J]. Acta Mater., 2005, 53: 2305
doi: 10.1016/j.actamat.2005.01.037
29 Chen Z, Zhu Q K, Zhang K W, et al. The non-isothermal and isothermal crystallization behavior and mechanism of Fe-Ni Alloys [J]. Cryst. Growth Des., 2020, 20: 2187
doi: 10.1021/acs.cgd.9b01059
30 Duarte M J, Kostka A, Crespo D, et al. Kinetics and crystallization path of a Fe-based metallic glass alloy [J]. Acta Mater., 2017, 127: 341
doi: 10.1016/j.actamat.2017.01.031
31 Herzer G. Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets [J]. IEEE Trans. Magn., 1990, 26(5): 1397
[1] 刘仲武, 何家毅. 钕铁硼永磁晶界扩散技术和理论发展的几个问题[J]. 金属学报, 2021, 57(9): 1155-1170.
[2] 巩劭廷, 蒋成保, 张天丽. Fe对SmCo基高温永磁体微观结构及矫顽力的影响[J]. 金属学报, 2017, 53(6): 726-732.
[3] 曾强,燕平,邵冲,赵京晨,韩凤奎,张龙飞. K480铸造镍基高温合金900 ℃高温时效过程中晶界粗化行为研究[J]. 金属学报, 2013, 49(1): 63-70.
[4] 王倩 蒋成保. 350 ℃中温段SmCo永磁材料的研究[J]. 金属学报, 2011, 47(12): 1605-1610.
[5] 包小倩 高学绪 朱洁 张茂才 周寿增. Nd含量对纳米晶NdxFe94-xB6合金磁性能的影响[J]. 金属学报, 2009, 45(8): 988-993.
[6] 徐民 易军 全明秀 王沿东 左良. Nb对非晶态Fe-Co-Nd-B合金的晶化动力学的影响[J]. 金属学报, 2009, 45(1): 91-96.
[7] 包小倩; 孙绪新; 高学绪; 张茂才; 董清飞; 周寿增 . 优化边界结构制备高矫顽力及高热稳定性烧结 Nd-Fe-B 磁体[J]. 金属学报, 2008, 44(7): 871-875 .
[8] 孙年祥;刘学东;李淑苓;丁炳哲;卢柯. 部分非晶态Fe_(33)Zr_(67)合金条带的表观晶化动力学[J]. 金属学报, 1995, 31(17): 206-211.
[9] 肖耀福;张正义;唐伟忠. 获得高矫顽力NdFeB粉末的新途径——HDD法[J]. 金属学报, 1992, 28(8): 91-94.
[10] 高文莉;隋智通;卢柯;李淑苓;王景唐. 非晶态Pd-Cu-Si合金的晶化动力学研究[J]. 金属学报, 1992, 28(7): 65-69.
[11] 张延忠;年素珍. 具有优良磁性能的新型铁基微晶合金的研究[J]. 金属学报, 1992, 28(6): 76-84.
[12] 周寿增;张瑾;马德青;高茂林. 添加Dy和Dy_2O_3的烧结NdFeB系永磁体的显微结构与磁硬化[J]. 金属学报, 1992, 28(3): 69-74.
[13] 刘学东;王景唐. 非晶(Fe_(0.99)Cu_(0.01))_(78)Si_9B_(13)合金等温晶化动力学[J]. 金属学报, 1992, 28(11): 65-69.
[14] 陈钟敏;谢发勤;史正兴;王乐仪;傅恒志. 铸造/热压Pr-Fe-B磁体的矫顽力及其与晶粒尺寸关系[J]. 金属学报, 1991, 27(5): 125-129.
[15] 苗卫方;王景唐;李淑苓. 预退火处理对非晶Cu-Ti合金晶化过程动力学的影响[J]. 金属学报, 1990, 26(4): 113-118.