Please wait a minute...
金属学报  2022, Vol. 58 Issue (10): 1253-1260    DOI: 10.11900/0412.1961.2022.00392
  研究论文 本期目录 | 过刊浏览 |
2000℃高温高承载的Ta-W难熔合金
张旭, 田谨, 薛敏涛, 江峰, 李苏植(), 张博召, 丁俊, 李小平, 马恩, 丁向东, 孙军()
西安交通大学 金属材料强度国家重点实验室 西安 710049
Ta-W Refractory Alloys with High Strength at 2000oC
ZHANG Xu, TIAN Jin, XUE Mintao, JIANG Feng, LI Suzhi(), ZHANG Bozhao, DING Jun, LI Xiaoping, MA En, DING Xiangdong, SUN Jun()
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
引用本文:

张旭, 田谨, 薛敏涛, 江峰, 李苏植, 张博召, 丁俊, 李小平, 马恩, 丁向东, 孙军. 2000℃高温高承载的Ta-W难熔合金[J]. 金属学报, 2022, 58(10): 1253-1260.
Xu ZHANG, Jin TIAN, Mintao XUE, Feng JIANG, Suzhi LI, Bozhao ZHANG, Jun DING, Xiaoping LI, En MA, Xiangdong DING, Jun SUN. Ta-W Refractory Alloys with High Strength at 2000oC[J]. Acta Metall Sin, 2022, 58(10): 1253-1260.

全文: PDF(9889 KB)   HTML
摘要: 

如何在保持高温优异力学性能的同时,还能兼顾优异的室温塑性和加工成型能力,一直是超高温难熔合金设计的难点。本工作设计并利用真空电弧熔炼制备了W含量(原子分数)分别为10%、20%、30%、40%和50%的Ta-W合金。这些合金形成了Ta和W均匀互溶的具有bcc结构的单相固溶体,其晶粒尺寸随着W含量的增加而减小。测试了Ta-W合金在室温(25℃)和高温(2000℃)下的压缩应力-应变曲线,结果表明,室温和高温下Ta-W合金的压缩强度均随着W含量的增加而提高,提高的幅度在W含量超过20%后趋于平缓。值得注意的是,Ta-W合金在2000℃下具有优异的高温强度,例如,Ta-20%W合金的屈服强度可达236 MPa,并同时具有超过40%的室温压缩应变和较好的(机)加工成型能力。现有理论模型较好地预测了合金室温和高温的压缩强度,其主要强化机制均为固溶强化。该合金体系有望作为新型超高温材料应用于航空航天的关键承载结构部件。

关键词 Ta-W合金压缩力学性能高温强度    
Abstract

Advanced structural alloys that can withstand exceedingly high operating temperatures are in high demand. The high-temperature strength of these alloys needs to be above a certain level, above and beyond what can be offered by currently available alloys, while still having adequate room-temperature ductility to allow sufficient forming ability. In this study, Ta-W refractory alloys with W content ranging from 10% to 50% (atomic fraction) are prepared using arc-melting. All the Ta-W alloys are single-phase solid solutions with a bcc structure, and their average grain size decreases with increasing W content. Uniaxial compression tests are performed at both 25°C and 2000°C for the Ta-W alloys. The results suggest that the compressive yield strength of the Ta-W alloys increases with the W concentration at both temperatures, and they exhibit excellent compressive strength at high temperatures. In particular, the strength of the Ta-20%W alloy could reach as high as 236 MPa at 2000°C, a benchmark never reported for known alloys, while offering room-temperature shaping capability with a compressive strain over 40% at 25°C. A recent model based on screw dislocation activities in bcc concentrated solutions yields a reasonable prediction for the yield strength measured at both temperatures. Such Ta-W refractory alloys have the potential for load-bearing applications at extremely high temperatures.

Key wordsTa-W alloy    compressive mechanical property    high-temperature strength
收稿日期: 2022-08-12     
ZTFLH:  TG146.4  
基金资助:国家自然科学基金联合基金重点项目(U2067219)
作者简介: 张 旭,男,1998年生,硕士生
图1  Ta-W合金压缩试样尺寸
图2  电弧熔炼制备的不同W含量的Ta-W合金锭
图3  不同W含量Ta-W合金的XRD谱和晶格常数
图4  Ta-W合金的微观组织的SEM像及其EDS面扫描分析
图5  Ta-W合金25和2000℃高温压缩性能,以及该合金与文献中Ta-W合金[23]和难熔高熵合金[9,24~29]压缩性能的对比(列出了商业镍基高温合金[30]的拉伸强度作为参考态)
Alloy25oC2000oC
ExperimentalPredictedExperimentalPredicted
Ta-10%W59945716298
Ta-20%W836703236150
Ta-30%W944817330187
Ta-40%W1010905385224
Ta-50%W1030870369218
表1  Ta-W合金在25和2000℃下压缩屈服强度实验测量值与理论预测值 (MPa)
图6  25和2000℃下Ta-W合金理论模型预测和实验测量的压缩屈服强度的对比
1 Liang X B, Wan Y X, Mo J Y, et al. Research progress in novel high-temperature high entropy alloys [J]. Sci. Technol. Rev., 2021, 39(11): 96
1 梁秀兵, 万义兴, 莫金勇 等. 新型高温高熵合金材料研究进展 [J]. 科技导报, 2021, 39(11): 96
2 Van Wie D M, D'Alessio S M, White M E. Hypersonic airbreathing propulsion [J]. Johns Hopkins APL Tech. Dig., 2005, 26: 430
3 Zhang J, Wang L, Wang D, et al. Recent progress in research and development of Nickel-based single crystal superalloys [J]. Acta Metall. Sin., 2019, 55: 1077
3 张 健, 王 莉, 王 栋 等. 镍基单晶高温合金的研发进展 [J]. 金属学报, 2019, 55: 1077
4 Zheng X, Bai R, Wang D H, et al. Research development of refractory metal materials used in the field of aerospace [J]. Rare Met. Mater. Eng., 2011, 40(10): 1871
4 郑 欣, 白 润, 王东辉 等. 航天航空用难熔金属材料的研究进展 [J]. 稀有金属材料与工程, 2011, 40(10): 1871
5 Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts [J]. Acta Mater., 2017, 122: 448
doi: 10.1016/j.actamat.2016.08.081
6 Senkov O N, Wilks G B, Miracle D B, et al. Refractory high-entropy alloys [J]. Intermetallics, 2010, 18: 1758
doi: 10.1016/j.intermet.2010.05.014
7 Liu Z Q, Qiao J W. Research progress of refractory high-entropy alloys [J]. Mater. China, 2019, 38: 767
7 刘张全, 乔珺威. 难熔高熵合金的研究进展 [J]. 中国材料进展, 2019, 38: 767
8 Zhao H C, Liang X B, Qiao Y L, et al. Research progress of low-density and high-entropy alloys [J]. J. Aeronaut. Mater., 2019, 39(5): 61
8 赵海朝, 梁秀兵, 乔玉林 等. 低密度高熵合金的研究进展 [J]. 航空材料学报, 2019, 39(5): 61
9 Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys [J]. Intermetallics, 2011, 19: 698
doi: 10.1016/j.intermet.2011.01.004
10 Couzinié J P, Senkov O N, Miracle D B, et al. Comprehensive data compilation on the mechanical properties of refractory high-entropy alloys [J]. Data Brief, 2018, 21: 1622
doi: 10.1016/j.dib.2018.10.071 pmid: 30505892
11 Han Z D, Luan H W, Liu X, et al. Microstructures and mechanical properties of Ti x NbMoTaW refractory high-entropy alloys [J]. Mater. Sci. Eng., 2018, A712: 380
12 Li T X, Jiao W N, Miao J W, et al. A novel ZrNbMoTaW refractory high-entropy alloy with in-situ forming heterogeneous structure [J]. Mater. Sci. Eng., 2021, A827: 142061
13 Wang Z Q, Wu H H, Wu Y, et al. Solving oxygen embrittlement of refractory high-entropy alloy via grain boundary engineering [J]. Mater. Today, 2022, 54: 83
doi: 10.1016/j.mattod.2022.02.006
14 Wei Q Q, Xu X D, Shen Q, et al. Metal-carbide eutectics with multiprincipal elements make superrefractory alloys [J]. Sci. Adv., 2022, 8: eabo2068
doi: 10.1126/sciadv.abo2068
15 Zhou L. Numerical simulation and experimental investigation of micro plasma arc welding of tantalum tungsten alloy thin sheets [D]. Wuhan: Wuhan University of Technology, 2017
15 周 浪. 钽钨合金薄板微束等离子弧焊数值模拟与实验研究 [D]. 武汉: 武汉理工大学, 2017
16 Wang H, Zhang X M, Li L P, et al. Industry applications of tantalum and tantalum alloy [J]. Equip. Manuf. Technol., 2013, (8): 115
16 王 晖, 张小明, 李来平 等. 钽及钽合金在工业装备中的应用 [J]. 装备制造技术, 2013, (8): 115
17 Wu M H, Li S Q, Xu D M, et al. Mechanical properties of alloy Ta-10W at elevated temperature [J]. Rare Met. Mater. Eng., 2006, 35(suppl. 2) : 64
17 吴孟海, 李树清, 许德美 等. Ta-10W合金的高温力学性能 [J]. 稀有金属材料与工程, 2006, 35(): 64
18 Buckman Jr R W. New applications for tantalum and tantalum alloys [J]. JOM, 2000, 52(3): 40
19 Huang W J, Qiao J W, Chen S H, et al. Preparation, structures and properties of tungsten-containing refractory high entropy alloys [J]. Acta Phys. Sin., 2021, 70(10): 235
19 黄文军, 乔珺威, 陈顺华 等. 含钨难熔高熵合金的制备、结构与性能 [J]. 物理学报, 2021, 70(10): 235
20 Li Q Y, Zhang H, Li D C, et al. Manufacture of WNbMoTa high performance high-entropy alloy by laser additive manufacturing [J]. J. Mech. Eng., 2019, 55(15): 10
doi: 10.3901/JME.2019.15.010
20 李青宇, 张 航, 李涤尘 等. 激光增材制造WNbMoTa高性能高熵合金 [J]. 机械工程学报, 2019, 55(15): 10
doi: 10.3901/JME.2019.15.010
21 Xu Q, Wang Q, Li J, et al. Effects of Boron on the microstructure and mechanical properties of NbMoTiVSi0.2 refractory high entropy alloys [J]. Spec. Cast. Nonferrous Alloys, 2022, 42(3): 292
21 徐 琴, 王 琪, 李 娟 等. B对NbMoTiVSi0.2难熔高熵合金组织与力学性能的影响 [J]. 特种铸造及有色合金, 2022, 42(3): 292
22 Cui Z D, Liu H S. Metal Materials and Heat Treatment [M]. Changsha: Central South University Press, 2010: 95
22 崔振铎, 刘华山. 金属材料及热处理 [M]. 长沙: 中南大学出版社, 2010: 95
23 Lassila D H, Goldberg A, Becker R. The effect of grain boundaries on the athermal stress of tantalum and tantalum-tungsten alloys [J]. Metall. Mater. Trans., 2002, 33A: 3457
24 Senkov O N, Senkova S V, Woodward C. Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys [J]. Acta Mater., 2014, 68: 214
doi: 10.1016/j.actamat.2014.01.029
25 Senkov O N, Woodward C F. Microstructure and properties of a refractory NbCrMo0.5Ta0.5TiZr alloy [J]. Mater. Sci. Eng., 2011, A529: 311
26 Senkov O N, Senkova S V, Miracle D B, et al. Mechanical properties of low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system [J]. Mater. Sci. Eng., 2013, A565: 51
27 Guo N N, Wang L, Luo L S, et al. Microstructure and mechanical properties of refractory MoNbHfZrTi high-entropy alloy [J]. Mater. Des., 2015, 81: 87
doi: 10.1016/j.matdes.2015.05.019
28 Senkov O N, Scott J M, Senkova S V, et al. Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy [J]. J. Mater. Sci., 2012, 47: 4062
doi: 10.1007/s10853-012-6260-2
29 Senkov O N, Isheim D, Seidman D N, et al. Development of a refractory high entropy superalloy [J]. Entropy, 2016, 18: 102
doi: 10.3390/e18030102
30 Praveen S, Kim H S. High-entropy alloys: Potential candidates for high-temperature applications—An overview [J]. Adv. Eng. Mater., 2018, 20: 1700645
doi: 10.1002/adem.201700645
31 Asghari-rad P, Sathiyamoorthi P, Bae J W, et al. Effect of grain size on the tensile behavior of V10Cr15Mn5Fe35Co10Ni25 high entropy alloy [J]. Mater. Sci. Eng., 2019, A744: 610
32 Park C H, Hong S C, Lee C S. A unified constitutive model for quasi-static flow responses of pure Ta and Ta-W alloys [J]. Mater. Sci. Eng., 2011, A528: 1154
33 Yin B L, Maresca F, Curtin W A. Vanadium is an optimal element for strengthening in both fcc and bcc high-entropy alloys [J]. Acta Mater., 2020, 188: 486
doi: 10.1016/j.actamat.2020.01.062
34 Maresca F, Curtin W A. Mechanistic origin of high strength in refractory BCC high entropy alloys up to 1900 K [J]. Acta Mater., 2020, 182: 235
doi: 10.1016/j.actamat.2019.10.015
35 Varvenne C, Luque A, Curtin W A. Theory of strengthening in fcc high entropy alloys [J]. Acta Mater., 2016, 118: 164
doi: 10.1016/j.actamat.2016.07.040
36 Yin B L, Curtin W A. First-principles-based prediction of yield strength in the RhIrPdPtNiCu high-entropy alloy [J]. npj Comput. Mater., 2019, 5: 14
doi: 10.1038/s41524-019-0151-x
37 Chen B, Li S Z, Zong H X, et al. Unusual activated processes controlling dislocation motion in body-centered-cubic high-entropy alloys [J]. Proc. Natl. Acad. Sci. USA, 2020, 117: 16199
doi: 10.1073/pnas.1919136117
[1] 杨祖坤, 张昌盛, 庞蓓蓓, 洪艳艳, 莫方杰, 刘昭, 孙光爱. 初始微结构对多晶金属Be宏观力学性能的影响[J]. 金属学报, 2018, 54(8): 1150-1156.
[2] 李海昭,张继. Al含量对高Nb铸造TiAl合金高温强度和室温塑性的影响[J]. 金属学报, 2013, 49(11): 1423-1427.
[3] 陈畅 汪明朴 王珊 贾延琳 左波 夏福中. Ta-7.5%W合金箔材冷轧过程中的位错结构演变[J]. 金属学报, 2011, 47(8): 984-989.
[4] 陈志永 才鸿年 王富耻 谭成文 詹从堃 刘楚明. 冷轧Cu板动态压缩力学性能各向异性的研究[J]. 金属学报, 2009, 45(2): 143-150.
[5] 王成国;菊池潮美. Ni_3Al-Mo高温复合材料的拉伸特性[J]. 金属学报, 1991, 27(2): 135-139.