|
|
热镀锌工艺中锌液表面流速的在线电磁测量 |
郑锦灿, 刘润聪( ), 王晓东( ) |
中国科学院大学材料科学与光电技术学院材料科学与光电工程中心 北京 100049 |
|
Online Electromagnetic Measurement of Molten Zinc Surface Velocity in Hot Galvanized Process |
ZHENG Jincan, LIU Runcong( ), WANG Xiaodong( ) |
Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China |
引用本文:
郑锦灿, 刘润聪, 王晓东. 热镀锌工艺中锌液表面流速的在线电磁测量[J]. 金属学报, 2020, 56(7): 929-936.
Jincan ZHENG,
Runcong LIU,
Xiaodong WANG.
Online Electromagnetic Measurement of Molten Zinc Surface Velocity in Hot Galvanized Process[J]. Acta Metall Sin, 2020, 56(7): 929-936.
[1] |
Zhang L Y, Li J, Zuo L. Current process and technology investigation situation in the field of steel strip continuous hot-dip galvanization [J]. Steel Rolling, 2005, 22(2): 38
|
[1] |
(张理扬, 李 俊, 左 良. 带钢连续热镀锌工艺技术的现状 [J]. 轧钢, 2005, 22(2): 38)
|
[2] |
Liu F, Zhao Z W. Temperature analysis of the molten zinc in zinc pot of continuous hot dip galvanized process [J]. J. Inner Mongolia Univ. Sci. Technol., 2011, 30: 18
|
[2] |
(刘 芳, 赵增武. 连续热镀锌工艺中锌锅内锌液温度分析 [J]. 内蒙古科技大学学报, 2011, 30: 18)
|
[3] |
Gao X C, Fan H B, Guan L K. The control effective aluminum's theory and relatively technical developing in the continuous galvanizing process [J]. Bengang Technol., 2006, (4): 22
|
[3] |
(高兴昌, 范洪彬, 关立凯. 控制带钢连续热镀锌工艺中有效铝的研究及当前技术进展 [J]. 本钢技术, 2006, (4): 22)
|
[4] |
Li T T, Li T F, Tang Q, et al. Effect of strip-entry temperature on coating during continuous hot-dip galvanizing process [J]. Heat Treat. Met., 2014, 39(9): 48
|
[4] |
(李婷婷, 李腾飞, 汤 茜等. 带钢入锌锅温度对连续热镀锌层的影响 [J]. 金属热处理, 2014, 39(9): 48)
|
[5] |
Mao F F, Dong A P, Han L Y, et al. Effects of zinc bath outside circulating purification on fluid and heat transfer of continuous hot dip galvanizing pot [J]. Hot Work. Technol., 2017, 46(8): 38
|
[5] |
(冒飞飞, 董安平, 韩兰英等. 锌液体外循环净化对连续热镀锌锅流动与传热的影响 [J]. 热加工工艺, 2017, 46(8): 38)
|
[6] |
Yang M, Mi L J, Shan Y G, et al. Numerical simulation of mixed convection for low Prandtl number fluid in galvanizing bath [J]. J. Eng. Thermophys., 2008, 29: 115
|
[6] |
(杨 茉, 米丽娟, 单彦广等. 锌锅中低Pr流体混合对流的数值模拟 [J]. 工程热物理学报, 2008, 29: 115)
|
[7] |
Yang M, Kang H B, Mi L J. Oscillation of mixed convection in galvanizing bath for low Prandtl number fluid [J]. J. Eng. Thermophys., 2008, 29: 2708
|
[7] |
(杨 茉, 康宏博, 米丽娟. 锌锅中低Pr流体混合对流的自维持振荡 [J]. 工程热物理学报, 2008, 29: 2708)
|
[8] |
Zhu L. Numerical study of thermal and flow fields in a galvanizing zinc pot [D]. Shanghai: East China University of Science and Technology, 2015
|
[8] |
(朱 路. 热镀锌锌锅中的流动与传热数值研究 [D]. 上海: 华东理工大学, 2015)
|
[9] |
Ajersch F, Ilinca F, Hétu J F. Simulation of flow in a continuous galvanizing bath: Part I. Thermal effects of ingot addition [J]. Metall. Mater. Trans., 2004, 35B: 161
|
[10] |
Lee S J, Kim S, Koh M S, et al. Flow field analysis inside a molten Zn pot of the continuous hot-dip galvanizing process [J]. ISIJ Int., 2002, 42: 407
|
[11] |
Che C S, Lu J T, Kong G, et al. Role of silicon in steels on galvanized coatings [J]. Acta Metall. Sin. (Engl. Lett.), 2009, 22: 138
|
[12] |
Thess A, Votyakov E V, Kolesnikov Y. Lorentz force velocimetry [J]. Phys. Rev. Lett., 2006, 96: 164501
|
[13] |
Thess A, Votyakov E, Knaepen B, et al. Theory of the Lorentz force flowmeter [J]. New J. Phys., 2007, 9: 299
|
[14] |
Wegfrass A, Diethold C, Werner M, et al. A universal noncontact flowmeter for liquids [J]. Appl. Phys. Lett., 2012, 100: 194103
|
[15] |
Wang X D, Kolesnikov Y, Thess A. Numerical calibration of a Lorentz force flowmeter [J]. Meas. Sci. Technol., 2012, 23: 045005
|
[16] |
Minchenya V, Karcher C, Kolesnikov Y, et al. Calibration of the Lorentz force flowmeter [J]. Flow Meas. Instrum., 2011, 22: 242
|
[17] |
Hernández D, Boeck T, Karcher C, et al. Numerical calibration of a multicomponent local Lorentz force flowmeter [J]. Magnetohydrodynamics, 2017, 53: 233
|
[18] |
Viré A, Knaepen B, Thess A. Lorentz force velocimetry based on time-of-flight measurements [J]. Phys. Fluids, 2010, 22: 125101
|
[19] |
Jian D D, Karcher C, Xu X J, et al. Development of a non-contact electromagnetic surface velocity sensor for molten metal flow [J]. J. Iron Steel Res. Int., 2012, 19: 509
|
[20] |
Jian D D. Flow measurement in liquid metals using Lorentz force velocimetry—Laboratory experiments and numerical simulations [D]. Ilmenau: Ilmenau University of Technology, 2013
|
[21] |
Dubovikova N, Kolesnikov Y, Karcher C. Experimental study of an electromagnetic flow meter for liquid metals based on torque measurement during pumping process [J]. Meas. Sci. Technol., 2015, 26: 115304
|
[22] |
Kolesnikov Y, Karcher C, Thess A. Lorentz force flowmeter for liquid aluminum: Laboratory experiments and plant tests [J]. Metall. Mater. Trans., 2011, 42B: 441
|
[23] |
Hernández D, Boeck T, Karcher C, et al. Numerical and experimental study of the effect of the induced electric potential in Lorentz force velocimetry [J]. Meas. Sci. Technol., 2018, 29: 015301
|
[24] |
Stelian C. Calibration of a Lorentz force flowmeter by using numerical modeling [J]. Flow Meas. Instrum., 2013, 33: 36
|
[25] |
Wang X D, Thess A, Moreau R, et al. Lorentz force particle analyzer [J]. J. Appl. Phys., 2016, 120: 014903
|
[26] |
Miranda R, Barron M A, Barreto J, et al. Experimental and numerical analysis of the free surface in a water model of a slab continuous casting mold [J]. ISIJ Int., 2005, 45: 1626
|
[27] |
Deng X X, Xiong X, Wang X H, et al. Effect of nozzle bottom shapes on level fluctuation and meniscus velocity in high-speed continuous casting molds [J]. J. Univ. Sci. Technol. Beijing, 2014, 36: 515
|
[27] |
(邓小璇, 熊 宵, 王新华等. 水口底部形状对高拉速板坯连铸结晶器液面特征的影响 [J]. 北京科技大学学报, 2014, 36: 515)
|
[28] |
Felten F, Fautrelle Y, Du Terrail Y, et al. Numerical modelling of electromagnetically-driven turbulent flows using LES methods [J]. Appl. Math. Modell., 2004, 28: 15
|
[29] |
Wang X D, Fautrelle Y, Etay J, et al. A periodically reversed flow driven by a modulated traveling magnetic field: Part I. Experiments with GaInSn [J]. Metall. Mater. Trans., 2008, 40B: 82
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|