Please wait a minute...
金属学报  2016, Vol. 52 Issue (5): 614-624    DOI: 10.11900/0412.1961.2015.00416
  论文 本期目录 | 过刊浏览 |
热镀Zn-0.2%Al镀层中Fe-Al抑制层失稳机理及其热力学评估*
刘力恒,车淳山,孔纲(),卢锦堂,张双红
华南理工大学材料科学与工程学院, 广州 510640
DESTABILIZATION MECHANISM OF Fe-Al INHIBITION LAYER IN Zn-0.2%Al HOT-DIP GALVANIZING COATING AND RELATED THERMODYNAMIC EVALUATION
Liheng LIU,Chunshan CHE,Gang KONG(),Jintang LU,Shuanghong ZHANG
School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
引用本文:

刘力恒,车淳山,孔纲,卢锦堂,张双红. 热镀Zn-0.2%Al镀层中Fe-Al抑制层失稳机理及其热力学评估*[J]. 金属学报, 2016, 52(5): 614-624.
Liheng LIU, Chunshan CHE, Gang KONG, Jintang LU, Shuanghong ZHANG. DESTABILIZATION MECHANISM OF Fe-Al INHIBITION LAYER IN Zn-0.2%Al HOT-DIP GALVANIZING COATING AND RELATED THERMODYNAMIC EVALUATION[J]. Acta Metall Sin, 2016, 52(5): 614-624.

全文: PDF(1187 KB)   HTML
摘要: 

在450 ℃镀锌条件下, 锌浴中加入质量分数为0.2%的Al, 采用SEM观察镀层的结构特征, 利用EDS定量分析相的微区成分, 利用其线扫描和面扫描定性分析镀层截面元素变化情况. 借助Miedema模型和Toop模型, 计算了镀层中各二元Fe-Al, Fe-Zn和三元Fe2Al5Znx (η)金属间化合物(IMC)的热力学值, 分析了随镀锌时间的延长, 出现Fe2Al5抑制层失稳破坏而产生Fe-Zn反应的根本原因. 结果表明, 因为Fe-Al IMC比Fe-Zn IMC具有更稳定的热力学性质, 钢基体与锌浴界面优先产生连续的Fe2Al5金属间化合物抑制层, 抑制Fe-Zn反应, 但随镀锌时间的延长, Fe2Al5的失稳破坏丧失对Fe-Zn反应的抑制作用, 生成FeZn10 (δ)相. Fe2Al5抑制层的失稳机制有两种: 一种是Fe2Al5/锌浴界面处Al的局部贫化导致Zn对Fe2Al5的侵蚀, 形成Fe2Al5Znx, 造成系统热力学稳定性降低, 从而导致Fe2Al5被Zn侵蚀分解, 同时在Fe2Al5/锌浴界面产生FeZn10 (δ)相; 另一种是Zn通过Fe2Al5晶界向钢基体扩散, 直接在Fe2Al5/钢基体界面产生δ相, 并引起Fe2Al5的迸发失稳.

关键词 热镀锌Fe2Al5金属间化合物热力学Miedema模型Toop模型    
Abstract

The formation of a uniform Fe-Al inhibition layer with a proper thickness at steel interface during continuous hot-dip galvanizing process is a crucial issue for industrial production. The inhibition layer prohibits the nucleation and growth of brittle Fe-Zn intermetallic compounds which deteriorate the adhesion of the galvanizing coating and result in an inhomogeneous distribution of the coating. The inhibition layer was identified to be Fe2Al5 with some Zn dissolved in it. But Fe2Al5 inhibition layer was damaged with galvanized time increasing, will lose the inhibition to the Fe-Zn reaction. Nevertheless, there is no systematic and comprehensive investigation the causes of the inhibition layer is damaged. The aim of this work is to clarify the destabilization mechanism of Fe2Al5 inhibition layer. In the present study, the mass fraction of 0.2%Al was added into the zinc bath at 450 ℃ for hot-dip galvanizing. SEM was used to observe the structure characteristics of the hot-dip galvanized coating. EDS was used to quantitatively analyze the micro area components of phases and also used its line scan and mapping scan to qualitatively analyze the element change of the coating cross section. By means of the Miedema model and the Toop model, the thermodynamic values of the binary Fe-Al, Fe-Zn and ternary Fe2Al5Znx (η) intermetallic compounds (IMC) in the coatings were calculated. The fundamental reason for the Fe-Zn reaction caused by Fe2Al5 destabilization with galvanized time increasing was analyzed. The results show that because Fe-Al IMC which is generate preferentially had more stable thermodynamic property than Fe-Zn IMC, the continuous Fe2Al5 intermetallic compound inhibition layer was produced preferentially at steel and zinc bath interface which inhibit the Fe-Zn reaction. However, with the galvanized time increasing, Fe2Al5 destabilization which led to the loss of inhibitory effect of Fe-Zn reaction and produced FeZn10 (δ) . There are two kinds of destabilization mechanism of Fe2Al5 inhibition layer, one is that the local depletion of Al at Fe2Al5 and zinc bath interface result in erosion of Fe2Al5 by Zn and the formed Fe2Al5Znx caused the decrease of the systematic thermodynamic stability which led to erosion and decomposition of Fe2Al5 by Zn. At the same time, FeZn10 (δ) phase was produced between the Fe2Al5 and zinc bath interface. The phase transformation process can be described as: Fe2Al5η→L+η→L+η+δ→L+δ. The other kind of destabilization mechanism is Zn diffused to the steel substrate by Fe2Al5 grain boundaries and directly produced δ phase between Fe2Al5 and steel substrate interface, which caused outburst of Fe2Al5. The two kinds of Fe2Al5 destabilization mechanism are mutual coexistence and mutual competition, in particular conditions may be a mechanism to occupy absolute advantage.

Key wordshot dip galvanized    Fe2Al5    IMC    thermodynamics    Miedema model    Toop model
收稿日期: 2015-07-24     
基金资助:*国际铅锌研究组织资助项目ILZRO/IZA/CN201212, 广东省教育部产学研结合项目2012B091100312和中央高校基本科研业务费项目2012ZM0011资助
图1  450 ℃下热镀锌不同时间后镀层横截面的SEM像和对应加粗箭头的EDS线扫描结果
Micro
square
Atomic fraction / % Phase
Al Fe Zn
1 - 1.96 98.04 L
2 20.74 63.62 15.64 Rich-Al phase
3 50.24 22.98 26.78 η+δ
4 1.74 7.34 90.92 δ
5 8.21 6.93 84.86 δ
6 2.09 12.22 85.69 δ
7 57.33 20.79 21.88 η+δ
8 3.25 9.23 87.52 δ
9 4.74 7.79 87.47 δ
表1  图1中微区1~9的EDS分析结果
图2  图1b中方框区域的SEM像及EDS元素面扫描分析
图3  Fe-Al-Zn 450 ℃富Zn角恒温截面图[32]
Element V ?* nWS W/P
Fe 7.09 4.93 5.55 1.0
Al 10.00 4.20 2.70 1.9
Zn 9.17 4.10 2.30 1.4
表2  Fe, Al和Zn的物性参数[25]
IMC ΔHAB / (kJmol-1) GABE / (kJmol-1) aFe aAl or Zn ΔGθ / (kJmol-1)
Fe2Al5 -21.85 -19.28 6.03×10-6 0.595 -22.87
FeAl3 -19.18 -16.93 4.08×10-6 0.693 -20.31
Γ (Fe3Zn10) -2.87 -2.46 4.07×10-2 0.760 -5.71
Γ1 (Fe5Zn21) -2.68 -2.29 3.22×10-2 0.770 -5.24
δ (FeZn10) -1.12 -0.96 1.67×10-2 0.903 -2.79
ζ (FeZn13) -0.89 -0.76 1.32×10-2 0.923 -2.31
表3  Fe-Al和Fe-Zn IMC热力学值
图4  Fe2Al5晶体结构示意图及其在a轴方向的投影图
图5  450 ℃时热镀Zn-0.2% Al镀层生长示意图
[1] Marder A R.Prog Mater Sci, 2000; 45: 191
[2] Shao D W, He Z R, Zhang Y H, He Y.Hot Working Technol, 2012; 41: 122
[2] (邵大伟, 贺志荣, 张永宏, 何应. 热加工工艺, 2012; 41: 122)
[3] Dionne S.JOM-US, 2006; 58(3): 32
[4] Wang Y, Xing J D, Ma S Q, Liu G Z, Fu H G, Jia S.J Mater Eng Perform, 2015; 24: 2444
[5] Kim Y, Shin K S, Jeon S H, Chin K G, Lee J.Corros Sci, 2014; 85: 364
[6] Harvey G J, Mercer P D.Metall Trans, 1973; 4: 619
[7] Bélisle S, Lezon V, Gagné M.J Phase Equilib Diff, 1991; 12: 259
[8] Zhao J T.J Xiamen Univ (Nat Sci), 1996; 35: 532
[8] (赵景泰. 厦门大学学报(自然科学版), 1996; 35: 532)
[9] Campos C A, Guerrero-Mata M P, Colas R, Garza R.ISIJ Int, 2002; 42: 876
[10] Furdanowicz V, Shastry C R.Metall Mater Trans, 1999; 30A: 3031
[11] Zhang C H, Huang S, Shen J, Chen N X, Zhang C H, Huang S. Intermetallics, 2014; 52: 86
[12] Tang N Y.Metall Mater Trans, 1995; 26A: 1699
[13] Wakamatsu Y, Noguchi T, Yamane M, Noguchi F. Tetsu Hagané, 2001; 87: 138
[13] (若松良徳, 野口敬広, 山根政博, 野口文男.铁と钢, 2001; 87: 138)
[14] Yin F C, Zhao M X, Liu Y X, Han W T.Trans Nonferrous Met Soc China, 2013; 23: 556
[15] Wang K K, Hsu C W, Chang L, Gan D, Yang K C.Appl Surf Sci, 2013; 285: 458
[16] Tan P, Chen J M, Tang H P, Wang J Y, Wang J, Yang B J, Li Y N.J Func Mater, 2012; 43: 29
[17] Adachi Y, Arai M.Mater Sci Eng, 1998; A254: 305
[18] Jordan C E, Marder A R.J Mater Sci, 1997; 32: 5603
[19] Wang K K, Hsu C W, Chang L, Gan D, Yang K C.Appl Surf Sci, 2013; 285: 458
[20] Prabhudev S, Swaminathan S, Rohwerder M.Corros Sci, 2011; 53: 2413
[21] Inagaki J, Sakurai M, Watanabe T.Tetsu Hagané, 1993; 79: 1273
[21] (稲垣淳一, 櫻井理孝, 渡辺豊文.铁と钢, 1993; 79: 1273)
[22] Kato T, Nunome K, Kaneko K, Saka H. Acta Mater, 2000; 48: 2257
[23] Sun W X, Yan D R, Chen X G, Dong Y C, Li X Z.Acta Phys Sin, 2010; 59: 2228
[23] (孙文秀, 阎殿然, 陈学广, 董艳春, 李香芝. 物理学报, 2010; 59: 2228)
[24] Kato C, Koumura H, Mochizuki K, Morito N. US Pat,80106, 1995
[25] Miedema A R, Niessen A K, Deboer F R, Boom R, Matten W C.Cohesion in Metals: Transition Metal Alloys. Amsterdam: North-Holland Publishing Co., 1989: 38
[26] Zhang R F, Rajan K.Chem Phys Lett, 2014; 612: 177
[27] Ding X Y, Fan P, Han Q Y.Acta Metall Sin, 1994; 30: 49
[27] (丁学勇, 范鹏, 韩其勇. 金属学报, 1994; 30: 49)
[28] Dragan M, Dragana Z, Katayama I.J Serb Chem Soc, 2005; 70: 9
[29] Bo S, Ohnuma I, Dupin N, Kattner U R, Fries S G.Acta Mater, 2009; 57: 2896
[30] Wo?czyński W, Pogoda Z, Garze? G, Kucharska B, Sypień A, Okane T.Arch Metall Mater, 2014; 59: 1223
[31] Yoshitaka A, Masahiro A.Mater Sci Eng, 1998; A254: 305
[32] Raghavan V.J Phase Equilib Diff, 2003; 24: 546
[33] Su X P, Li Z, Yin F C, He Y H, Pan S W.Acta Metall Sin, 2008; 44: 718
[33] (苏旭平, 李智, 尹付成, 贺跃辉, 潘世文. 金属学报, 2008; 44: 718)
[34] Fu X C, Shen W X, Yao T Y, Hou W H. Physical Chemistry. Vol.II, 5th Ed., Beijing: Higher Education Press, 2004: 253
[34] (傅献彩, 沈文霞, 姚天扬, 候文华. 物理化学(下). 第五版, 北京: 高等教育出版社, 2004: 253)
[35] Tanaka T, Gokcen N A, Morita Z.Z Metallkd, 1990; 81(1): 49
[36] Jiang Z H, Liu Y, Li Y, Liang L K.J Northeastern Univ (Nat Sci), 2005; 26: 252
[36] (姜周华, 刘杨, 李阳, 梁连科. 东北大学学报(自然科学版), 2005; 26: 252)
[37] Le Q Z, Cui J Z.Acta Metall Sin, 2006; 42: 1182
[37] (乐启炽, 崔建忠. 金属学报, 2006; 42: 1182)
[38] Sun S P, Yi D Q, Zang B.Rare Met Mater Eng, 2010; 39: 1974
[38] (孙顺平, 易丹青, 臧冰. 稀有金属材料与工程, 2010; 39: 1974)
[39] Yan D, He J, Tian B, Dong Y, Li X, Zhang J.Surf Coat Technol, 2006; 201: 2662
[1] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.
[2] 王寒玉, 李彩, 赵璨, 曾涛, 王祖敏, 黄远. 基于纳米活性结构的不互溶W-Cu体系直接合金化及其热力学机制[J]. 金属学报, 2023, 59(5): 679-692.
[3] 张月鑫, 王举金, 杨文, 张立峰. 冷却速率对管线钢中非金属夹杂物成分演变的影响[J]. 金属学报, 2023, 59(12): 1603-1612.
[4] 居天华, 舒念, 何维, 丁学勇. 合金溶液中溶质间活度相互作用系数预测模型[J]. 金属学报, 2023, 59(11): 1533-1540.
[5] 高建宝, 李志诚, 刘佳, 张金良, 宋波, 张利军. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59(1): 87-105.
[6] 丁宗业, 胡侨丹, 卢温泉, 李建国. 基于同步辐射X射线成像液/固复层界面氢气泡的形核、生长演变与运动行为的原位研究[J]. 金属学报, 2022, 58(4): 567-580.
[7] 陈维, 陈洪灿, 王晨充, 徐伟, 罗群, 李谦, 周国治. Fe-C-Ni体系膨胀应变能对马氏体转变的影响[J]. 金属学报, 2022, 58(2): 175-183.
[8] 皇甫顥, 王子龙, 刘永利, 孟凡顺, 宋久鹏, 祁阳. W1 - x Ir x 固溶合金几何结构、电子结构、力学和热力学性能的第一性原理计算[J]. 金属学报, 2022, 58(2): 231-240.
[9] 周丽君, 位松, 郭敬东, 孙方远, 王新伟, 唐大伟. 基于飞秒激光时域热反射法的微尺度Cu-Sn金属间化合物热导率研究[J]. 金属学报, 2022, 58(12): 1645-1654.
[10] 胡标, 张华清, 张金, 杨明军, 杜勇, 赵冬冬. 界面热力学与晶界相图的研究进展[J]. 金属学报, 2021, 57(9): 1199-1214.
[11] 冯苗苗, 张红伟, 邵景霞, 李铁, 雷洪, 王强. 耦合热力学相变路径预测Fe-C包晶合金宏观偏析[J]. 金属学报, 2021, 57(8): 1057-1072.
[12] 刘峰, 王天乐. 基于热力学和动力学协同的析出相模拟[J]. 金属学报, 2021, 57(1): 55-70.
[13] 郑锦灿, 刘润聪, 王晓东. 热镀锌工艺中锌液表面流速的在线电磁测量[J]. 金属学报, 2020, 56(7): 929-936.
[14] 黄远, 杜金龙, 王祖敏. 二元互不固溶金属合金化的研究进展[J]. 金属学报, 2020, 56(6): 801-820.
[15] 于家英, 王华, 郑伟森, 何燕霖, 吴玉瑞, 李麟. 热浸镀锌高强汽车板界面组织对其拉伸断裂行为的影响[J]. 金属学报, 2020, 56(6): 863-873.