|
|
立方晶体弹性常数和EAM/FS势函数的关系 |
段灵杰,刘永长( ) |
天津大学材料科学与工程学院水利安全与仿真国家重点实验室 天津 300354 |
|
Relationships Between Elastic Constants and EAM/FS Potential Functions for Cubic Crystals |
DUAN Lingjie,LIU Yongchang( ) |
State Key Lab of Hydraulic Engineering Simulation and Safety, School of Materials Science and Engineering, Tianjin University, Tianjin 300354, China |
引用本文:
段灵杰,刘永长. 立方晶体弹性常数和EAM/FS势函数的关系[J]. 金属学报, 2020, 56(1): 112-118.
Lingjie DUAN,
Yongchang LIU.
Relationships Between Elastic Constants and EAM/FS Potential Functions for Cubic Crystals[J]. Acta Metall Sin, 2020, 56(1): 112-118.
[1] | Leach A R. Molecular Modelling: Principles and Applications [M]. 2nd Ed., New York: Prentice Hall, 2001: 145 | [2] | Chang L, Zhou C Y, Liu H X, et al. Orientation and strain rate dependent tensile behavior of single crystal titanium nanowires by molecular dynamics simulations [J]. J. Mater. Sci. Technol., 2018, 34: 864 | [3] | Zhang H F, Yan H L, Jia N, et al. Exploring plastic deformation mechanism of multilayered Cu/Ti composites by using molecular dynamics modeling [J]. Acta Metall. Sin., 2018, 54: 1333 | [3] | (张海峰, 闫海乐, 贾 楠等. Cu/Ti纳米层状复合体塑性变形机制的分子动力学模拟研究 [J]. 金属学报, 2018, 54: 1333) | [4] | Yuan S L, Zhang H, Zhang D J. Molecular Simulation: Theory and Experiment [M]. Bejing: Chemical Industry Press, 2016: 28 | [4] | (苑世领, 张 恒, 张冬菊. 分子模拟: 理论与实验 [M]. 北京: 化学工业出版社, 2016: 28) | [5] | Wang J, Yu L M, Huang Y, et al. Effect of crystal orientation and He density on crack propagation behavior of bcc-Fe [J]. Acta Metall. Sin., 2018, 54: 47 | [5] | (王 瑾, 余黎明, 黄 远等. 晶体取向和He浓度对bcc-Fe裂纹扩展行为的影响 [J]. 金属学报, 2018, 54: 47) | [6] | Zhang X, Li H W, Zhan M. Mechanism for the macro and micro behaviors of the Ni-based superalloy during electrically-assisted tension: Local Joule heating effect [J]. J. Alloys Compd., 2018, 742: 480 | [7] | Daw M S, Baskes M I. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals [J]. Phys. Rev., 1984, 29B: 6443 | [8] | Finnis M W, Sinclair J E. A simple empirical N-body potential for transition metals [J]. Philos. Mag., 1984, 50A: 45 | [9] | Zhang B W, Hu W Y, Shu X L. Thery of Embedded Atom Method and Its Application to Materials Science: Atomic Scale Materials Design Theory [M]. Changsha: Hunan University Press, 2003: 71 | [9] | (张邦维, 胡望宇, 舒小林. 嵌入原子方法理论及其在材料科学中的应用: 原子尺度材料设计理论 [M]. 长沙: 湖南大学出版社, 2003: 71) | [10] | Zhang B W, Ouyang Y F, Liao S Z, et al. An analytic MEAM model for all BCC transition metals [J]. Physica, 1999, 262B: 218 | [11] | Johnson R A. Relationship between defect energies and embedded-atom-method parameters [J]. Phys. Rev., 1988, 37B: 6121 | [12] | Johnson R A. Alloy models with the embedded-atom method [J]. Phys. Rev., 1989, 39B: 12554 | [13] | Wang H P, Zheng C H, Zou P F, et al. Density determination and simulation of Inconel 718 alloy at normal and metastable liquid states [J]. J. Mater. Sci. Technol., 2018, 34: 436 | [14] | Wang H P, Zhao J F, Liu W, et al. An anomalous thermal expansion phenomenon induced by phase transition of Fe-Co-Ni alloys [J]. J. Appl. Phys., 2018, 124: 215107 | [15] | Zou P F, Wang H P, Yang S J, et al. Density measurement and atomic structure simulation of metastable liquid Ti-Ni alloys [J]. Metall. Mater. Trans., 2018, 49A: 5488 | [16] | Ouyang Y F, Zhang B W, Liao S Z, et al. A simple analytical EAM model for bcc metals including Cr and its application [J]. Z. Phys., 1996, 101B: 161 | [17] | Zhang Y, Ashcraft R, Mendelev M I, et al. Experimental and molecular dynamics simulation study of structure of liquid and amorphous Ni62Nb38 alloy [J]. J. Chem. Phys., 2016, 145: 204505 | [18] | Lü P, Zhou K, Cai X, et al. Thermophysical properties of undercooled liquid Ni-Zr alloys: Melting temperature, density, excess volume and thermal expansion [J]. Comput. Mater. Sci., 2017, 135: 22 | [19] | Dai X D, Li J H, Liu B X. Atomistic modeling of crystal-to-amorphous transition and associated kinetics in the Ni-Nb system by molecular dynamics simulations [J]. J. Phys. Chem., 2005, 109B: 4717 | [20] | Baskes M I. Modified embedded-atom potentials for cubic materials and impurities [J]. Phys. Rev., 1992, 46B: 2727 | [21] | Fan Q N, Wang C Y, Yu T, et al. A ternary Ni-Al-W EAM potential for Ni-based single crystal superalloys [J]. Physica, 2015, 456B: 283 | [22] | Lei Y W, Sun X R, Zhou R L, et al. Embedded atom method potentials for Ce-Ni binary alloy [J]. Comput. Mater. Sci., 2018, 150: 1 | [23] | Yang L, Zhang F, Wang C Z, et al. Implementation of metal-friendly EAM/FS-type semi-empirical potentials in HOOMD-blue: A GPU-accelerated molecular dynamics software [J]. J. Comput. Phys., 2018, 359: 352 | [24] | Srinivasan P, Nicola L, Simone A. Modeling pseudo-elasticity in NiTi: Why the MEAM potential outperforms the EAM-FS potential [J]. Comput. Mater. Sci., 2017, 134: 145 | [25] | Kelly A, Knowles K M. Crystallography and Crystal Defects [M]. 2nd Ed., Chichester: Wiley, 2012: 181 | [26] | Jamal M, Asadabadi S J, Ahmad I, et al. Elastic constants of cubic crystals [J]. Comput. Mater. Sci., 2014, 95: 592 | [27] | Wen M, Barnoush A, Yokogawa K. Calculation of all cubic single-crystal elastic constants from single atomistic simulation: Hydrogen effect and elastic constants of nickel [J]. Comput. Phys. Commun., 2011, 182: 1621 | [28] | Zope R R, Mishin Y. Interatomic potentials for atomistic simulations of the Ti-Al system [J]. Phys. Rev., 2003, 68B: 024102 | [29] | Pun G P P, Mishin Y. Development of an interatomic potential for the Ni-Al system [J]. Philos. Mag., 2009, 89: 3245 | [30] | Lai Z H. Crystal Defects and Mechanical Properties of Metals [M]. Bejing: Metallurgical Industry Press, 1988: 22 | [30] | (赖祖涵. 金属的晶体缺陷与力学性质 [M]. 北京: 冶金工业出版社, 1988: 22) | [31] | Etesami S A, Asadi E. Molecular dynamics for near melting temperatures simulations of metals using modified embedded-atom method [J]. J. Phys. Chem. Solids, 2018, 112: 61 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|