Please wait a minute...
金属学报  2015, Vol. 51 Issue (3): 257-271    DOI: 10.11900/0412.1961.2014.00406
  本期目录 | 过刊浏览 |
高强铝合金的发展及其材料的制备加工技术
张新明(), 邓运来, 张勇
中南大学材料科学与工程学院, 长沙 410083
DEVELOPMENT OF HIGH STRENGTH ALUMINUM ALLOYS AND PROCESSING TECHNIQUES FOR THE MATERIALS
ZHANG Xinming(), DENG Yunlai, ZHANG Yong
School of Materials Science and Engineering, Central South University, Changsha 410083
引用本文:

张新明, 邓运来, 张勇. 高强铝合金的发展及其材料的制备加工技术[J]. 金属学报, 2015, 51(3): 257-271.
Xinming ZHANG, Yunlai DENG, Yong ZHANG. DEVELOPMENT OF HIGH STRENGTH ALUMINUM ALLOYS AND PROCESSING TECHNIQUES FOR THE MATERIALS[J]. Acta Metall Sin, 2015, 51(3): 257-271.

全文: PDF(7777 KB)   HTML
摘要: 

本文简述了国内外高强铝合金发展的理论基础及其材料的制备加工技术. 针对大规格高性能铝合金材料的成分设计、熔炼、均匀化、固溶、淬火、预拉伸以及时效各工序的相关技术的研究热点和发展进行了介绍和讨论. 并对我国该类铝合金及其发展和应用提出了建议.

关键词 高强铝合金铝合金结构材料铝合金设计铝加工    
Abstract

The fundamental theories for the development of high strength aluminum alloys and processing techniques for the materials are briefly reviewed in this paper. It specifically focuses on alloying design, casting, homogenization, solution treatment, quenching, pre-stretching and ageing that have been extensively studied recently. Based on these discussions, some perspectives and suggestions have been proposed, which will benefit the development and applications of high strength aluminum alloys.

Key wordshigh strength aluminum alloy    aluminum structural material    aluminum alloying design    aluminum processing
收稿日期: 2014-06-30     
ZTFLH:  TG146.2  
基金资助:* 国家重点基础研究发展计划资助项目2012CB619500
作者简介: null

张新明, 男, 1945年生, 教授

Stage Typical property Key technique and microstructural Typical alloy
characteristic
1st generation Static strength Peak ageing, Cr, Mn-additions 2024-T3, 2014-T6,
1930s~1950s Coherent/semi-coherent precipitates 7075-T6, 7178-T6
Heat-resistant Heat-resistant phase 2618
2nd generation Stress-corrosion cracking Over ageing 7075-T76/T74
1950s~1960s resistant, damage tolerant Discontinuous distribution of grain
boundary precipitates, Cu diffusion
3rd generation High strength, Purifying, Zr-additions 7475-T74
1970s~1980s high toughness, Fine constituent particles 7050-T74
corrosion resistant 2519-T87
High strength, Li alloying 1420, 2090
low density Li-bearing strengthening phase 8090/2091
Heat resistant Rapid solidification, 8009/8109
spray forming heat-resistant phases, Aluminum matrix
fibres or particulates composites
4th generation High strength, Further purifying, 3-step ageing 7150-T77
1990s high toughness, Discontinuous distribution of grain 7055-T77
corrosion resistant, boundary precipitates and high density
more damage-tolerant metastable phases, narrow
precipitation-free-zone (PFZ)
More damage-tolerant Thermo-mechanical processing 2524-T39
clusters, substructures
Low density Li alloying, addition of minor species 2095/2195
Li-bearing strengthening phase 2098/2198
5th generation High strength, Lowering solvus, addition of 7085-T76/T74
2000s~now high toughness, slower diffusing species,
low quench sensitivity phase and grain boundaries with low
energy, high density metastable phases
Low density, more Li alloying, addition of minor species 2099/2199
damage- tolerant Li-bearing strengthening phase 2050/2060
More heat-resistant Addition of minor species, 2039/2139/2040
new heat-resistant phases
表1  铝合金的发展及其特征性能、关键技术、特征微结构以及典型合金
图1  Al-Cu 二元合金中的GP区, θ″, θ′和 θ 相(Al2Cu)的结构示意图[2]
图2  几种7×××系铝合金淬火敏感性比较(C-曲线)[36~38]
图3  高强铝合金材料的工艺-微结构-性能关系[42]
图4  AlZnMgCu-0.16Zr-0.2Cr-0.3Yb合金中位错的运动被钉扎并形成了弯曲的亚晶界[50]
图5  形变热处理对Al-7.81Zn-1.81Mg-1.62Cu合金抗剥落腐蚀性能的影响[60]
图6  Al-8Zn-xMg-1.6Cu合金Mg含量-硬度-淬火敏感性的关系[70]
图7  Al3Zr 弥散粒子在再结晶过程中发生共格-不共格转变从而诱导淬火析出相的析出[77]
  
图9  不同工艺处理后的2519A铝合金析出相分布情况[100]
图10  均匀化后冷却速率对7050铝合金板材再结晶的影响[107]
图11  回归再时效(RRA)处理示意图
图12  回归再时效对合金硬度或屈服强度的影响[126]
图13  高温预析出使7A55合金产生晶界不连续相分布[127]
图14  空客A380飞机的机翼壁板[137]
图15  外加载荷对Al-4Cu合金晶内析出相的影响[139]
Stage Typical property Key technique Typical alloy
1st generation Static strength Peak ageing, 7A04(LC4), 2A12(LY12),
1950s~1970s Cr, Mn-additions 2014(D10)
2nd generation Stress-corrosion cracking Over ageing 7A09-T73, T74(7075-T73, T74)
1970s~1980s resistant, damage tolerant (LC9), 2219(LY16)
3rd generation High strength, Purifying, Zr-addition 7475, 2124, 2324, 7050
1980s~2000s high toughness, Fine constituent particles, 7B04, 2D70, 2D12, 2B06 and
corrosion-resistant two-step ageing, lowering 5A90, 1420(Al-Li)
density
4th generation 2000s~ High strength, high toughness, Further purifying, multi-stage 7A55, 2A97, 2E12, 7B50
corrosion-resistant, high heat treatment, Li alloying
damage-tolerant
5th generation 2005s~ Low quench-sensitivity, Lowering solvus, addition of 7A50, 7A85, 7B85
high comprehensive properties slower diffusing species
表2  中国高强铝合金材料的发展概况
[1] Mondolfo L F,translated by Wang Z T,Zhang Z L,Zhen X. Microstructure and Properties of Aluminum Alloy. Beijing: Metallurgical Industry Press, 1988: 1
[1] (Mondolfo L F 著,王祝堂,张振录,郑璇译. 铝合金的组织与性能. 北京: 冶金工业出版社, 1988: 1)
[2] Polmear I J. Light Alloys: Metallurgy of the Light Metals. 4th Ed., Melbourne: Elsevier′s Science and Technology, 2006: 1
[3] Immarigeon J P, Holt R T, Koul A K, Zhao L, Wallace W, Beddoes J C. Mater Charact, 1995; 35: 41
[4] Rioja R J, Liu J. Metall Mater Trans, 2012; 43A: 3325
[5] Heinz A, Haszler A, Keidel C, Moldenhauer S, Benedictus R, Miller W S. Mater Sci Eng, 2000; A280: 102
[6] Wilm A. Metall: Zeitschrift für die Gesamte Hüttenkunde, 1911; 8: 225
[7] Sander W, Meissner K L. Zeitschrift für Metallkunde, 1923; 15: 181
[8] Aluminum Association. International Alloy Designations and Chemical Composition Limits for Wrought Aluminum and Wrought Aluminum Alloys. Arlington, Virginia: The Aluminum Association, 2006: 1
[9] Yao J S, Cai Y F, Li C G. Aero Manuf Technol, 2007; (10): 36
[9] (姚君山, 蔡益飞, 李程刚. 航空制造技术, 2007; (10): 36)
[10] Starke Jr E A, Staley J T. Prog Aerosp Sci, 1996; 32: 131
[11] Fisher J J, Kramer L S, Pickens J R. Adv Mater Processes, 2002; 160(9): 43
[12] Rioja R J. Mater Sci Eng, 1998; A257: 100
[13] Peel C J, Evans B, Mcdarmaid D. In: Davis J R ed., Proc Third Aluminium-Lithiun Conference, Materials Park, OH: ASM International, 1986: 26
[14] Bretz P E, Sawtell R R. In: Davis J R ed., Proc Third Aluminium-Lithiun Conference, Materials Park, OH: ASM International, 1986: 47
[15] Burton C L, Mayer L W, Spuhler E H. In: Van Horn K R ed., Aircraft and Aerospace Applications. Vol.2, Materials Park, OH: American Society for Metals, 1967: 1
[16] Fridlyander I N, Sandler V S, Nikolskaya T I. Met Sci Heat Treat, 1983; 25: 495
[17] Friedlander I N, Bratukhin A G, Davydov V A. Soviet Al-Li Alloys of Aerospace Applications. Garmisch-Partenkirchen: DMG Verlag, 1992: 1
[18] Aerospace Material Specification, AMS 4252, sae, March, 1999
[19] Aerospace Material Specification, AMS 4206A, sae, Jan., 1999
[20] Williams J C, Starke J E A. Acta Mater, 2003; 51: 5775
[21] Aerospace Material Specification, AMS 4296, Aug., 2003
[22] Shi Y J, Pan Q L, Li M J, Huang X, Li B. J Alloys Compd, 2012; 612: 42
[23] Wen S P, Gao K Y, Li Y, Huang H, Nie Z R. Scr Mater, 2011; 65: 592
[24] Wen S P, Xing Z B, Huang H, Li B L, Wang W, Nie Z R. Mater Sci Eng, 2009; A516: 42
[25] Nie Z R, Wen S P, Huang H, Li B L, Zuo T Y. Chin J Nonferrous Met, 2011; 21: 2361
[25] (聂祚仁, 文胜平, 黄 晖, 李伯龙, 左铁镛.中国有色金属学报, 2011; 21: 2361)
[26] Zhou X W, Liu Z Y, Bai S, Liu M, Ying P Y. Mater Sci Eng, 2013; A564: 186
[27] Kalu P N, Waller E A. Scr Mater, 1998; 39: 1599
[28] Hamilton B C, Saxena A. Eng Fract Mech, 1999; 62: 1
[29] Kermanidis A T, Zervaki A D, Haidemenopoulos G N, Pantelakis S G. Mater Des, 2010; 31: 42
[30] Vural M, Caro J. Mater Sci Eng, 2009; A520: 56
[31] Fridlyander I N. Met Sci Heat Treat, 2001; 43: 6
[32] Prasad N E, Gokhale A A, Wanhill R J H. Aluminium-Lithium Alloys. Amsterdam: Elsevier, 2014: 1
[33] Li J F, Zheng Z Q, Chen Y L, Zhang X H. Aerosp Mater Technol, 2012; (1): 13
[33] (李劲风, 郑子樵, 陈永来, 张绪虎. 宇航材料工艺, 2012; (1): 13)
[34] Dursun T, Soutis C. Mater Des, 2014; 56: 862
[35] Liu S D, Zhang X M, You J H, Huang Z B, Zhou Z P. Mater Sci Technol, 2008; 24: 1419
[36] Boselli J, Chakrabarti D J, Shuey R T. Al Alloys, 2008; 1: 202
[37] Fink W L, Willey L A. Trans AIME, 1948; 175: 414
[38] Shuey R T, Barlat F, Karabin M E, Chakrabarti D J. Metall Mater Trans, 2009; 40A: 365
[39] Lequeu P, Smith K P, Daniélou A. J Mater Eng Perform, 2010; 19: 841
[40] Zhang X M, Zhang X Y, Liu S D, Liu Y. J Cent South Univ (Sci Technol), 2007; 38: 789
[40] (张新明, 张小艳, 刘胜胆, 刘 瑛. 中南大学学报(自然科学版), 2007; 38: 789)
[41] Kumaran S M. Mater Sci Eng, 2011; A528: 4152
[42] Dursun T, Soutis C. Mater Des, 2014; 56: 862
[43] Engler O, Sachot E, Ehrstrom J C, Reeves A, Shahani R. Mater Sci Technol, 1996; 12: 717
[44] Starink M J, Wang S C. Acta Mater, 2003; 51: 5131
[45] Zhen L, Chen J Z, Yang S J, Shao W Z, Dai S L. Mater Sci Eng, 2009; A504: 55
[46] Deng Y L, Wan L, Zhang Y, Zhang X M. J Alloys Compd, 2010; 498: 88
[47] Ye L Y, Gu G, Liu J, Jiang H, Zhang X. Mater Sci Eng, 2013; A582: 84
[48] Zhang X M, Wang W T, Chen M A, Gao Z G, Jia Y Z, Ye L Y, Kuang X Y. Trans Nonferrous Met Soc, 2010; 20: 727
[49] Fang H C, Chen K H, Chen X, Chao H, Peng G S. Corros Sci, 2009; 51: 2872
[50] Zhang X M, Liu S D, Liu Y, Zhang X Y. J Cent South Univ (Sci Technol), 2007; 38: 181
[50] (张新明, 刘胜胆, 刘 瑛, 张小艳. 中南大学学报(自然科学版), 2007; 38: 181)
[51] Lin Z Q, Ru H Q, Zhao G, Sun G J. Key Eng Mater, 1991; 20: 2369
[52] Yang S J, Xie Y H, Zhu N, Dai S L, Lu Z, Su B, Yan M G. Chin J Mater Res, 2002; 16: 406
[52] (杨守杰, 谢优华, 朱 娜, 戴圣龙, 陆 政, 苏 彬, 颜鸣皋. 材料研究学报, 2002; 16: 406)
[53] He Y D, Zhang X M, You J H. Trans Nonferrous Met Soc, 2006; 16: 1228
[54] Ohnishi T, Ibaraki Y, Ito T. Mater Trans, 1989; 30: 601
[55] Avan A. Zeitschrift für Metallkunde, 1989; 80: 170
[56] Li J F, Birbilis N, Li C X, Jia Z Q, Cai B, Zheng Z Q. Mater Charact, 2009; 60: 1334
[57] Xiao Y P, Pan Q L, Li W B, Liu X Y, He Y B. Mater Des, 2011; 32: 2149
[58] Xu D K, Birbilis N, Rometsch P A. Corros Sci, 2012; 54: 17
[59] Zhang X M, Huang Z B, Liu S D, Liu W H, Zhang C, Du Y X. Chin J Nonferrous Met, 2006; 37: 1
[59] (张新明, 黄振宝, 刘胜胆, 刘文辉, 张 翀, 杜予暄. 中国有色金属学报, 2006; 37: 1)
[60] Deng Y L, Zhang Y Y, Wan L, Zhang X M. Mater Sci Eng, 2012; A554: 33
[61] Liu G, Zhang G J, Ding X D, Sun J, Chen K H. Mater Sci Eng, 2003; A344: 113
[62] Steglich D, Brocks W, Heerens J, Pardoen T. Eng Frac Mech, 2008; 75: 3692
[63] Liu G, Sun J, Nan C W, Chen K H. Acta Mater, 2005; 53: 3459
[64] Zuo Y, Nagaumi H, Cui J. J Mater Process Technol, 2008; 197: 109
[65] Li S, Sun F, Li H. Acta Mater, 2010; 58: 1317
[66] Feng D, Zhang X M, Liu S D, Wu Z Z, Wang T. Chin J Nonferrous Met, 2014; 24: 2122
[66] (冯 迪, 张新明, 刘胜胆, 吴泽政, 王 婷. 中国有色金属学报, 2014; 24: 2122)
[67] Li S Y, Surya R K, Irene J B. Mater Sci Eng, 2005; A410: 207
[68] Zhang X M, Deng Y L, Zhang Y. Chin Pat, ZL200910043001.3, 2011
[68] (张新明, 邓运来, 张 勇. 中国专利, ZL200910043001.3, 2011)
[69] Zhang J, Deng Y L, Yang W, Hu S, Zhang X M. Mater Des, 2014; 56: 334
[70] Deng Y L, Wan L, Zhang Y Y, Zhang X M. J Alloys Compd, 2011; 509: 4636
[71] Toor P M. Eng Fract Mech, 1973; 5: 837
[72] Bucci R J, Warren C J, Starke E A. J Aircraft, 2000; 37: 122
[73] Dursun T, Soutis C. Mater Des, 2014; 56: 862
[74] Suzuki H, Kanno M, Saitoh H. J Jpn Inst Light Met, 1984; 34: 630
[75] Suzuki H, Kanno M, Saitoh H. J Jpn Inst Light Met, 1986; 36: 22
[76] Liu S D, Liu W J, Zhang Y, Zhang X M, Deng Y L. J Alloys Compd, 2010; 507: 53
[77] Zhang Y, Bettles C, Rometsch P A. J Mater Sci, 2014; 49: 1709
[78] He Y D, Zhang X M. Chin J Nonferrous Met, 2005; 15: 1917
[78] (贺永东, 张新明. 中国有色金属学报, 2005; 15: 1917)
[79] Lim S T, Yun S J, Nam S W. Mater Sci Eng, 2004; A371: 82
[80] Marlaud T, Deschamps A, Bley F, Lefebvre W, Baroux B. Acta Mater, 2010; 58: 248
[81] Feng D, Zhang X M, Liu S D, Wang T, Wu Z Z, Guo Y W. Mater Sci Eng, 2013; A588: 34
[82] Li S Y, Zhang J, Yang J L, Deng Y L, Zhang X M. Acta Metall Sin (Engl Lett), 2014; 27: 107
[83] Bakavos D, Prangnell P B, Bes B, Eberl F. Mater Sci Eng, 2008; A491: 214
[84] Chul O M, Byungmin A. Trans Nonferrous Met Soc, 2014; 24: 53
[85] Tang H G, Cheng Z Q, Liu J W, Ma X. Mater Sci Eng, 2012; A550: 51
[86] Eddahbi M, Carreño F, Ruano O A. Mater Lett, 2006; 60: 3232
[87] Liu J Z, Yang S S, Wang S B, Chen J H, Wu C L. J Alloys Compd, 2014; 613: 139
[88] Bai S, Liu Z, Zhou X, Xia P, Liu M, Zeng S. Mater Sci Eng, 2014; A611: 69
[89] Ebrahimi G R, Zarei-Hanzaki A, Haghshenas M, Arabshahi H. J Mater Process Technol, 2008; 206: 25
[90] Feng Z Q, Yang Y Q, Huang B, Luo X, Li M H, Han M, Fu M S. Acta Mater, 2011; 59: 2412
[91] Marceau R K W, Sha G, Lumley R N, Ringer S P. Acta Mater, 2010; 58: 1795
[92] Wang S C, Starink M J, Gao N. Scr Mater, 2006; 54: 287
[93] Liu Y. Master Thesis, Central South University, Changsha, 2008
[93] (刘 瑛. 中南大学硕士学位论文, 长沙, 2008)
[94] Sun D X, Zhang X M, Ye L Y, Gu G, Jiang H C, Gui X H. Mater Sci Eng, 2014; A620: 241
[95] Gao Z G, Zhang X M, Chen M A. J Alloys Compd, 2009; 476: L1
[96] Gao Z G, Zhang X M, Zhao Y S, Chen M A, Li H J. J Alloys Compd, 2009; 481: 422
[97] Li H Z, Wang H J, Liang X P, Liu H T, Liu Y, Zhang X M. Mater Sci Eng, 2011; A528: 1548
[98] Ye L Y, Gu G, Zhang X M, Sun D, Jiang H, Zhang P. Mater Sci Eng, 2014; A590: 97
[99] Gu G. Master Thesis, Central South University, Changsha, 2014
[99] (顾 刚. 中南大学硕士学位论文, 长沙, 2014)
[100] Gu G, Ye L Y, Jiang H C, Sun D X, Zhang P, Zhang X M. Trans Nonferrous Met Soc, 2014; 24: 2295
[101] Liu W H, He Z T, Chen Y Q, Tang S W. Trans Nonferrous Met Soc, 2014; 24: 2179
[102] Wang W T, Zhang X M, Gao Z G, Jia Y Z, Ye L Y, Zheng D W, Liu L. J Alloys Compd, 2010; 491: 366
[103] Fu Y, Xie S S, Xiong B Q, Huang G J, Cheng L. J Plast Eng, 2010; 17(6): 103
[103] (付 垚, 谢水生, 熊柏青, 黄国杰, 程 磊. 塑性工程学报, 2010; 17(6): 103)
[104] Zhang T, Wu Y X, Gong H, Zheng X Z, Jiang S S. Trans Nonferrous Met Soc, 2014; 24: 2150
[105] Deng Y L, Zhang Y Y, Wan L, Zhu A F, Zhang X M. Metall Mater Trans, 2013; 44A: 2470
[106] Liu S D, You J H, Zhang X M, Deng Y, Yuan Y. Mater Sci Eng, 2010; A527: 1200
[107] Liu S D, Yuan Y B, Li C B, You J H, Zhang X M. Met Mater Int, 2012; 18: 679
[108] Yuan W J, Wu Y X. J Cent South Univ (Sci Technol), 2011; 42: 2303
[108] (袁望姣, 吴运新. 中南大学学报(自然科学版), 2011; 42: 2303
[109] Tang J G, Chen H, Zhang X M, Liu S D, Liu W J, Ouyang H, Li H P. Trans Nonferrous Met Soc, 2012; 22: 1255
[110] Rossini N S, Dassisti M, Benyounis K Y, Olabi A G. Mater Des, 2012; 35: 572
[111] Robinson J S, Tanner D A, Truman C E, Paradowska A M, Wimpory R C. Mater Charact, 2012; 65: 73
[112] Li P Y, Xiong B Q, Zhang Y A, Li Z H, Zhu B H, Wang F, Liu H W. Trans Nonferrous Met Soc, 2012; 22: 268
[113] Li P Y, Xiong B Q, Zhang Y A, Li Z H, Zhu B H, Wang F, Liu H W. Chin J Nonferrous Met, 2011; 21: 961
[113] (李培跃, 熊柏青, 张永安, 李志辉, 朱宝宏, 王 锋, 刘红伟. 中国有色金属学报, 2011; 21: 961)
[114] Shang B C, Yin Z M, Wang G, Liu B, Huang Z Q. Mater Des, 2011; 32: 3818
[115] Deng Y L, Guo S G, Xiong C X, Zhang X M. J Aero Mater, 2010; 30(6): 21
[115] (邓运来, 郭世贵, 熊创贤, 张新明. 航空材料学报, 2010; 30(6): 21)
[116] Qi L, Li M, Ma M, Jing Q, Li G, Liu R. Sci Chin-Phys Mech Astro, 2010; 53: 2037
[117] Mascarenhas N, Mudawar I. Int J Heat Mass Trans, 2010; 53: 5871
[118] Liu S D, Zhong Q M, Zhang Y, Liu W J, Zhang X M, Deng Y L. Mater Des, 2010; 31: 3116
[119] Sun H C, Chao L S. Mater Trans, 2009; 50: 1396
[120] Sugianto A, Narazaki M, Kogawara M, Shirayori A. J Mater Process Technol, 2009; 209: 4627
[121] Hewakandamby B N. Int J Heat Mass Trans, 2009; 52: 396
[122] Zhang Y, Deng Y L, Zhang X M. Chin J Nonferrous Met, 2008; 18: 1788
[122] (张 勇, 邓运来, 张新明. 中国有色金属报, 2008; 18: 1788)
[123] Silk E A, Golliher E L, Paneer S R. Energy Convers Manage, 2008; 49: 453
[124] Anna A P, Kiyoshi O, Michael A. Int J Heat Fluid Flow, 2008; 29: 131
[125] Jiang K D, Long C, Zhang Y Y, Deng Y L. Trans Nonferrous Met Soc, 2014; 24: 2117
[126] Cina B, Gan R. US Pat, 3856584, 1974
[127] Zhang X M, You J H, Zhang X Y, Liu S D. Chin J Nonferrous Met, 2007; 17: 1922
[127] (张新明, 游江海, 张小艳, 刘胜胆. 中国有色金属学报, 2007; 17: 1922)
[128] Ho K C, Lin J, Dean T A. Int J Plast, 2004; 20: 733
[129] Zhang J, Deng Y L, Zhang X M. Mater Sci Eng, 2013; A563: 8
[130] Zhang X M, Ye L Y, Liu Y W, Tang J G, Zheng D W. Mater Sci Technol, 2011; 27: 1588
[131] Ye L Y, Zhang X M, Zhen D W, Liu S D, Tang J G. J Alloys Compd, 2009; 487: 109
[132] Kaibyshev R, Osipova O. Mater Sci Technol, 2005; 21: 1209
[133] Threadgill P L, Leonard A J, Shercliff H R, Withers P J. Int Mater Rev, 2009; 54: 49
[134] Mishra R S, Ma Z Y. Mater Sci Eng, 2005; A50: 1
[135] Schubert E, Klassen M, Zerner I, Walz C, Sepold G. J Mater Process Technol, 2001; 115: 2
[136] Ion J C. Sci Technol Weld Joining, 2000; 5: 265
[137] Watchamk K. Mater World, 2004; 12(2): 10
[138] Zhu A W, Starke Jr E A. Mater Process Technol, 2001; 117: 354
[139] Zhu A W, Starke Jr E A. Acta Mater, 2001; 49: 2285
[140] Wang Z T,Tian R Z. Aluminum Alloy and Processing Manual. Changsha: Central South University Press, 2005: 1
[140] (王祝堂,田荣璋. 铝合金及其加工手册. 长沙: 中南大学出版社, 2005: 1)
[141] Zhang Y,Milkereit B,Weyland M,Rometsch A. Sci Rep, in press
[1] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[2] 韩宝帅, 魏立军, 徐严谨, 马晓光, 刘雅菲, 侯红亮. 预变形对超高强Al-Zn-Mg-Cu合金时效组织与力学性能的影响[J]. 金属学报, 2020, 56(7): 1007-1014.
[3] 侯陇刚, 刘明荔, 王新东, 庄林忠, 张济山. 高强7050铝合金超低温大变形加工与组织、性能调控[J]. 金属学报, 2017, 53(9): 1075-1090.
[4] 左锦荣,侯陇刚,史金涛,崔华,庄林忠,张济山. 两阶段轧制变形过程中高强铝合金析出相与晶粒结构演变及其对性能的影响*[J]. 金属学报, 2016, 52(9): 1105-1114.
[5] 杨超,王继杰,马宗义,倪丁瑞,付明杰,李晓华,曾元松. 7B04铝合金薄板的搅拌摩擦焊接及接头低温超塑性研究*[J]. 金属学报, 2015, 51(12): 1449-1456.
[6] 从保强 齐铂金 周兴国 罗军. 超音频脉冲方波电流参数对2219铝合金焊缝组织和力学性能的影响[J]. 金属学报, 2009, 45(9): 1057-1062.
[7] 田志凌; 许良红 . 高强铝合金焊接接头无析出物区的形成机理[J]. 金属学报, 2008, 44(1): 91-97 .
[8] 董杰; 刘晓涛; 赵志浩; 包卫平; 崔建忠 . 结晶器材料对低频电磁铸造超高强铝合金铸态组织的影响[J]. 金属学报, 2004, 40(2): 215-219 .