Please wait a minute...
金属学报  2014, Vol. 50 Issue (12): 1461-1470    DOI: 10.11900/0412.1961.2014.00204
  本期目录 | 过刊浏览 |
远青弧菌、硫酸盐还原菌及其混合菌种作用下 B10合金的海水腐蚀行为
魏仁超1,2, 许凤玲2, 蔺存国2, 唐晓3, 李焰3()
1 中国石油大学(华东)化学工程学院, 青岛 266580
2 中国船舶重工集团公司第725研究所海洋腐蚀与防护国家级重点实验室, 青岛 266071
3 中国石油大学(华东)机电工程学院, 青岛 266580
CORROSION BEHAVIOR OF B10 ALLOY EXPOSED TO SEAWATER CONTAINING VIBRIO AZUREUS, SULFATE-REDUCING BACTERIA, AND THEIR MIXTURE
WEI Renchao1,2, XU Fengling2, LIN Cunguo2, TANG Xiao3, LI Yan3()
1 College of Chemical Engineering, China University of Petroleum, Qingdao 266580
2 State key Laboratory for Marine Corrosion and Protection of Luoyang Ship Material Research Institute, Qingdao 266071
3 College of Mechanical and Electrical Engineering, China University of Petroleum, Qingdao 266580
引用本文:

魏仁超, 许凤玲, 蔺存国, 唐晓, 李焰. 远青弧菌、硫酸盐还原菌及其混合菌种作用下 B10合金的海水腐蚀行为[J]. 金属学报, 2014, 50(12): 1461-1470.
Renchao WEI, Fengling XU, Cunguo LIN, Xiao TANG, Yan LI. CORROSION BEHAVIOR OF B10 ALLOY EXPOSED TO SEAWATER CONTAINING VIBRIO AZUREUS, SULFATE-REDUCING BACTERIA, AND THEIR MIXTURE[J]. Acta Metall Sin, 2014, 50(12): 1461-1470.

全文: PDF(4890 KB)   HTML
摘要: 

采用电化学实验及SEM和EDS分析技术, 研究了B10合金分别在无菌和接种了远青弧菌、硫酸盐还原菌(SRB)以及二者混合菌种的海水中的腐蚀行为. 结果表明, 不同海洋微生物条件下B10合金的腐蚀行为及机制有所不同. 远青弧菌通过阻滞氧去极化阴极过程在一定程度上抑制B10合金腐蚀; SRB则通过氢去极化使阳极溶解加速, 而生成的粗大颗粒状腐蚀产物Cu2S对基体的保护性不佳, 促进了B10合金的腐蚀; 而在混合菌种条件下, B10合金腐蚀的阴极过程与仅接种SRB时相似, 但阳极溶解形成的腐蚀产物比后者细小且致密均匀, 使其阳极极化显著增大, 阻滞了试样的进一步腐蚀, 其腐蚀电流密度介于2种单一菌种之间. 因此在工程实践中, 根据实验室单一菌种条件下材料的腐蚀行为来估计和预测在实际微生物环境中材料的腐蚀行为时宜慎重.

关键词 硫酸盐还原菌远青弧菌电化学阻抗谱B10合金    
Abstract

With increasing attention paid to the security issues of onshore engineering structure, corrosion researches of copper alloy were focused on the influence of single bacteria, especially the anaerobic sulfate-reducing bacteria (SRB). However, a part of documents indicated that comprehensive influence of natural bacteria on the copper alloy does exist, and whether the influence of single bacteria could represent the real impact of natural complex bacteria is remaining unclear. Under this consideration, electrochemical measurements, incorporated with surface morphology and composition analysis, were employed to investigate the corrosion behavior of B10 alloy in seawater which was inoculated into Vibrio azureus, SRB and their mixed strains, respectively, in this work. The results showed that these marine micro-organisms could affect the corrosion process of B10 alloy in relatively different ways. Compared with the sterile condition, Vibrio azureus could inhabit the corrosion of B10 alloy to some extent by blocking cathodic oxygen reducing process, while SRB could significantly promote its corrosion by accelerating anodic dissolution of B10 alloy via hydrogen depolarization and forming loose and bulky corrosion products without complete protection. In the mixed microbial medium, SRB multiply rapidly in the local anaerobic environment created by the biological membrane of Vibrio azureus, their interacting changed the corrosive micro-environment on the surface of B10 alloy. The smaller and complicated corrosion products formed in the seawater containing mixed strains obviously performed better than that produced in the medium containing SRB only, giving rise to a significant increase in anodic polarization; at the same time, similar cathodic process was still occurred in the mixed culture. As a result, the corrosion current density of B10 alloy fell in between those detected in two single microbial media. For the practice engineering applications, therefore, the conclusions drawn from single microbe medium should be cautiously and carefully adopted as the criterion to evaluate corrosion behavior of B10 alloy in actual microbial environment.

Key wordssulfate-reducing bacteria    Vibrio azureus    electrochemical impedance spectroscopy    B10 alloy
    
ZTFLH:  TG178  
基金资助:* 国家自然科学基金重点项目51131008和中国石油大学(华东)创新工程项目CX-1221资助
作者简介: null

魏仁超, 女, 1990年生, 博士生

图1  B10合金在4种介质中的开路电位随时间的变化
图2  B10合金在灭菌海水中浸泡不同时间的Nyquist图及Bode图
图3  B10合金在接种远青弧菌的灭菌海水中浸泡不同时间的Nyquist图及Bode图
图4  B10合金在接种SRB的灭菌海水中浸泡不同时间的Nyquist图及Bode图
图5  在灭菌海水中接种混合菌种中B10合金的Nyquist图及Bode图
Medium Time Rs Ym nm Rm Yt nt Rt W, Y0
Ω·cm2 Ω-1·sn·cm-2 Ω·cm2 Ω-1·sn·cm-2 Ω·cm2 Ω-1·s5·cm-2
Sterile 1 h 19.34 296.2 0.7334 4198 3.753×10-3
seawater 1 d 5.757 47.66 0.6027 1.696×104 104.5 0.6953 1.690×104 1.026×10-3
2 d 7.519 58.70 0.5651 1.354×104 28.98 0.7639 1.350×104 8.670×10-4
4 d 19.65 87.49 0.6399 1.211×104 1.334×10-3
7 d 23.36 86.71 0.6271 1.438×104 1.634×10-3
13 d 21.15 79.76 0.6341 1.497×104 28.54 0.7334 1.880×104 7.471×10-3
Vibria 1 h 9.043 414.6 0.7363 1600 5.695×10-3
azureus 1 d 10.11 183.4 0.8036 1837 9.490×10-5
2 d 11.91 74.30 0.8993 2707 3.870×10-5
4 d 10.75 68.97 0.9148 3551 31.59 0.6517 3.87×105 2.860×10-5
7 d 15.49 150.1 0.8001 9626 13850 1.000 3385 4.900×1013
13 d 13.40 166.1 0.8300 8877 17840 1.000 1778 2.640×1010
SRB 1 h 1.281 13.12 3.580×10-8 2.322 924.4 0.8188 80.31 6.960×10-4
1 d 3.112 976.7 0.8268 15.35 556.1 0.5131 1.771×104 5.660×10-5
2 d 3.194 180.7 1.000 1.606 1067 0.753 736.9 4.470×10-4
4 d 3.195 191.3 1.000 2.942 1141 0.7732 968.8 3.970×10-4
7 d 4.480 1858 0.7545 57.42 121.6 1.000 1517 3.480×10-4
13 d 4.019 1815 0.7586 70.39 206.4 0.9991 2235 2.480×10-4
Mixture 1 h 7.583 242.8 0.7946 56.38 202.7 0.7958 1.18×104 9.230×10-4
bacteria 1 d 6.595 185.3 0.8276 46.77 464.5 0.8278 1.66×104 1.254×10-3
2 d 4.713 164.3 0.8493 56.00 579.2 0.8370 2.41×104 1.256×10-3
4 d 5.450 176.3 0.8403 76.55 660.9 0.8603 4.35×104 3.266×10-3
7 d 9.947 217.1 0.8109 85.95 632.5 0.8749 5.94×104 2.330×10-3
13 d 5.322 235.3 0.8104 79.04 663.8 0.8690 8.33×104 2.420×106
表1  B10合金在4种腐蚀介质中的EIS解析参数
图6  B10合金在4种不同介质中浸泡12 d的极化曲线
Medium Ba / mV Bc / mV icorr / (μA·cm-2) Ecorr / V
Sterile seawater 59.17 125.80 0.5473 -0.247
Vibrio azureus 55.43 199.50 0.4720 -0.230
SRB 24.62 95.57 14.1100 -0.878
Mixture bacteria 267.10 84.58 1.1550 -0.833
表2  B10合金在4种不同介质中的极化曲线拟合参数
图7  B10合金在腐蚀介质中浸泡12 d后的腐蚀形貌及选区EDS
Medium C O S Fe Ni Cu Bal.
Sterile seawater - 27.72 - 1.21 6.57 60.75 3.75
Vibrio azureus - 10.88 11.44 - 10.08 67.07 0.53
SRB 4.24 5.44 29.56 - - 60.75 0.01
Mixture bacteria 4.45 24.50 23.18 4.86 5.26 35.97 1.78
表3  图7中B10合金表面选区EDS分析结果
图8  3种微生物介质条件下B10合金的腐蚀示意图
[1] Rao T S, Nair K V K. Corros Sci, 1998; 40: 1821
[2] Rao T S, Sairam T N, Viswamathan B, Nair K V K. Corros Sci, 2000; 42: 1417
[3] Little B, Wagner P, Ray R, Pope R, Scheetz R. J Ind Microbiol Blot, 1991; 8: 213
[4] Licina G L. Mater Perform, 1989; 28: 55
[5] Al-Meshari A, Diab M, Al-Enazi S. Hydrocarbon Process, 2011; 90: 55
[6] Zhang J, Liu F L, Li W H, Duan J Z, Hou B R. Acta Metall Sin, 2010; 46: 1250
[6] (张 杰, 刘奉令, 李伟华, 段继周, 侯保荣. 金属学报, 2010; 46: 1250)
[7] Lytle D A, Nadagouda M N. Corros Sci, 2010; 52: 1927
[8] Sun F L, Lu L, Li X G, Wan H X, Du C W, Liu Z Y. Acta Metall Sin, 2013; 49: 1
[8] (孙飞龙, 卢 琳, 李晓刚, 万红霞, 杜翠薇, 刘智勇. 金属学报, 2013; 49: 1)
[9] Liu G Z, Qian J H, Ma Y, Wu J H. Electrochemistry, 2002; 8: 191
[9] (刘光洲, 钱建华, 马 焱, 吴建华. 电化学, 2002; 8: 191)
[10] Mcneil M B. Corrosion, 1991; 47: 74
[11] Little B J, Ray R I, Wagner P A, Jones-Meehan J, Lee C C, Mansfeld F. Biofouling, 1999; 13: 301
[12] Li J, Li J, Jiao D. Corros Sci Prot Technol, 2011; 3: 18
[12] (李 娟, 李 进, 焦 迪. 腐蚀科学与防护技术, 2011; 3: 18)
[13] Starosvetsky D, Khaselev O, Starosvetsky J, Armon R, Yahalom J. Corros Sci, 2000; 42: 345
[14] Huang G S, Liu G Z, Duan D X, Wang J. Corros Prot, 2004; 25: 242
[14] (黄国胜, 刘光洲, 段东霞, 王 军. 腐蚀与防护, 2004; 25: 242)
[15] Li J, Xu Z Y, Du Y L, Mou W T, Sun W G. J Chin Soc Corros Prot, 2007; 27: 342
[15] (李 进, 许兆义, 杜一立, 牟伟腾, 孙文刚. 中国腐蚀与防护学报, 2007; 27: 342)
[16] Javaherdashti R. Appl Microbiol Biotechnol, 2011; 91: 1507
[17] Dong Z H, Shi W, Ruan H M, Zhang G A. Corros Sci, 2011; 53: 2978
[18] Chen J, Lei Y H, Gao G H, Kong M L, Yin Y S. J Chin Soc Corros Prot, 2011; 31: 231
[18] (陈 娟, 类延华, 高冠慧, 孔茉莉, 尹衍升. 中国腐蚀与防护学报, 2011; 31: 231)
[19] Nercessian D, Duville F B, Desimone M, Simison S, Busalmen J P. Water Res, 2010; 44: 2592
[20] Jayaraman A, Ornek D, Duarte D A, Lee C, Mansfeld F B, Wood T K. Appl Microbiol Biotechnol, 1999; 52: 787
[21] Reyes A, Letelier M V, Iglesia R D, Gonza′lez B, Lagos G. Int Biodeterior Biodegrad, 2008; 61: 135
[22] Valcarce M B, Sa′nchez S R, Va′zquez M. Corros Sci, 2005; 47: 795
[23] Yuan S J, Choong A F M, Pehkonen S O. Corros Sci, 2007; 49: 4352
[24] Wu J Y, Xiao W L, Chai K, Yang Y H. Acta Metall Sin, 2010; 46: 118
[24] (吴进怡, 肖伟龙, 柴 柯, 杨雨辉. 金属学报, 2010; 46: 118)
[25] Wu J Y, Chai K, Xiao W L, Yang Y H, Han E H. Acta Metall Sin, 2010; 46: 755
[25] (吴进怡, 柴 柯, 肖伟龙, 杨雨辉, 韩恩厚. 金属学报, 2010; 46: 755)
[26] Yu L. PhD Dissertation, Institute of Oceanology, Chinese Academy of Sciences, 2011
[26] (于 林. 中国科学院海洋研究所博士学位论文, 2011)
[27] Xu C M. PhD Dissertation, Xi′an Jiaotong University, 2007
[27] (胥聪敏. 西安交通大学博士学位论文, 2007)
[28] Xu C M, Zhang Y H, Cheng G X, Zhu W S H. Mater Sci Eng, 2007; A443: 235
[29] Liu H Q, Wan Y, Zhang D, Hou B R. J Corros Prot, 2011; 32: 81
[29] (刘怀群, 万 逸, 张 盾, 侯保荣. 腐蚀与防护, 2011; 32: 81)
[30] Zhu G J, Xiong K, Li W, Du X H, Gu C X. Ship Eng, 2012; 34(1): 92
[30] (朱冠军, 熊 凯, 李 伟, 杜兴华, 顾彩香. 船舶工程, 2012; 34(1): 92)
[31] Pope R, Little B, Ray R. Biofouling, 2000; 16: 83
[32] Li J. PhD Dissertation, Beijing Jiaotong University, 2007
[32] (李 进. 北京交通大学博士学位论文, 2007)
[33] Cao C N. Corrosion Electrochemical Principle. 2nd Ed, Beijing: Chemical Industry Press, 2004: 251
[33] (曹楚南. 腐蚀电化学原理(第二版). 北京: 化学工业出版社, 2004: 251)
[34] Li Y, Wei X J, Feng F L. Chin J Nonferrous Met, 2001; 11: 248
[34] (李 焰, 魏绪钧, 冯法伦. 中国有色金属学报, 2001; 11: 248)
[1] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[2] 潘成成, 张翔, 杨帆, 夏大海, 何春年, 胡文彬. 三维石墨烯/Cu复合材料在模拟海水环境中的腐蚀和空蚀行为[J]. 金属学报, 2022, 58(5): 599-609.
[3] 白杨, 王振华, 李相波, 李焰. 低压冷喷涂制备Al(Y)-30%Al2O3涂层及其海水腐蚀行为[J]. 金属学报, 2019, 55(10): 1338-1348.
[4] 舒韵, 闫茂成, 魏英华, 刘福春, 韩恩厚, 柯伟. X80管线钢表面SRB生物膜特征及腐蚀行为[J]. 金属学报, 2018, 54(10): 1408-1416.
[5] 卿永长,杨志炜,鲜俊,许进,闫茂成,吴堂清,于长坤,于利宝,孙成. 交流电和微生物共同作用下Q235钢的腐蚀行为*[J]. 金属学报, 2016, 52(9): 1142-1152.
[6] 傅欣欣, 董俊华, 韩恩厚, 柯伟. 低碳钢Q235在模拟酸雨大气腐蚀条件下的电化学阻抗谱监测*[J]. 金属学报, 2014, 50(1): 57-63.
[7] 周小卫,沈以赴. Ni-CeO2纳米镀层在酸性NaCl溶液中的腐蚀行为及电化学阻抗谱特征[J]. 金属学报, 2013, 49(9): 1121-1130.
[8] 厉英,丁玉石,崔绍刚,王常珍. 掺杂Sc的CaZrO3的制备及电学性能[J]. 金属学报, 2012, 48(5): 575-578.
[9] 张杰 宋秀霞 栾鑫 孙彩霞 段继周 侯保荣. 海藻希瓦氏菌对Zn-Al-Cd牺牲阳极的腐蚀性能影响[J]. 金属学报, 2012, 48(12): 1495-1502.
[10] 郭少强 许立宁 常炜 密雅荣 路民旭. 3Cr管线钢CO2腐蚀实验研究[J]. 金属学报, 2011, 47(8): 1067-1074.
[11] 黄发 王俭秋 韩恩厚 柯伟. 硼酸缓冲溶液中Cl-浓度和温度对690合金腐蚀行为的影响[J]. 金属学报, 2011, 47(7): 809-815.
[12] 王长罡 董俊华 柯伟 陈楠. 硼酸缓冲溶液中pH值和Cl-浓度对Cu腐蚀行为的影响[J]. 金属学报, 2011, 47(3): 354-360.
[13] 宋利晓 张昭 张鉴清 曹楚南. 纳米结构黑镍薄膜的电沉积机理[J]. 金属学报, 2011, 47(1): 123-128.
[14] 施锦杰 孙伟 耿国庆. 碳化对模拟混凝土孔溶液中HRB335钢腐蚀行为的影响[J]. 金属学报, 2011, 47(1): 17-24.
[15] 朱庆振 薛文斌 鲁亮 杜建成 刘贯军 李文芳. (Al2O3-SiO2)sf/AZ91D镁基复合材料微弧氧化膜的制备及电化学阻抗谱分析 制备及电化学阻抗谱分析[J]. 金属学报, 2011, 47(1): 74-80.