Please wait a minute...
金属学报  2012, Vol. 48 Issue (11): 1281-1289    DOI: 10.3724/SP.J.1037.2012.00084
  论文 本期目录 | 过刊浏览 |
Cu对690 MPa级HSLA钢熔敷金属组织形成和细化的作用
彭云1), 王爱华1, 2), 肖红军1), 田志凌1)
1) 钢铁研究总院先进钢铁流程及材料国家重点实验室, 北京 100081
2) 承德石油高等专科学校机械工程系, 承德 06700
EFFECT OF Cu ON MICROSTRUCTURE FORMING AND REFINING OF WELD METAL IN 690 MPa GRADE HSLA STEEL
PENG Yun1), WANG Aihua1, 2),  XIAO Hongjun1), TIAN Zhiling1)
1) State Key Laboratory of Advanced Steel Processes and Products, Central Iron & Steel Research Institute, Beijing 100081
2) Department of Mechanical Engineering, Chengde Petroleum College, Chengde 06700
引用本文:

彭云 王爱华 肖红军 田志凌. Cu对690 MPa级HSLA钢熔敷金属组织形成和细化的作用[J]. 金属学报, 2012, 48(11): 1281-1289.
PENG Yun WANG Aihua XIAO Hongjun TIAN Zhiling. EFFECT OF Cu ON MICROSTRUCTURE FORMING AND REFINING OF WELD METAL IN 690 MPa GRADE HSLA STEEL[J]. Acta Metall Sin, 2012, 48(11): 1281-1289.

全文: PDF(1079 KB)  
摘要: 

通过OM, TEM和EBSD等分析手段, 并结合热膨胀测试法, 研究了Cu对690 MPa级HSLA钢焊丝熔敷金属组织转变及组织细化的作用, 并对细化机理进行了探讨. 研究结果表明, 熔敷金属的组织主要由板条状贝氏体(LB)、粒状贝氏体(GB) 和残余奥氏体(AR)组成, Cu含量从0.24%增加到0.53%时, 马氏体/奥氏体(M/A)组元数量由0.6%减少到0.31%, 并且形状也由小块状、条状向颗粒状转变; 残余奥氏体数量增多; 同时, 组织的亚结构得到明显细化, 贝氏体板条块尺寸和板条平均宽度分别从2.18和0.39 μm减少到1.99和0.36 μm, 可阻碍裂纹扩展的大角度晶界的比例也由68.5\增加到71.0%. 通过对晶粒细化原因进行分析发现, Cu能降低奥氏体转变温度, 增加奥氏体的稳定性, 使相变时铁素体自由能(Gα)和奥氏体自由能(Gγ)差值增大, 减小临界晶胚尺寸; 同时, 相变温度的降低也降低了C的扩散速率, 使已形核的晶胚长大速率减慢, 最终细化了亚晶粒结构.

关键词 HSLA钢熔敷金属相变温度组织转变组织细化    
Abstract

The effect of Cu on microstructure transformation and microstructure refining of the weld metal of 690 MPa grade HSLA steel was investigated by OM, TEM, EBSD and thermal expansion instrument, and the mechanism of microstructure refining was discussed. Experimental results indicate that microstructure of weld metal is composed of granular bainite, lath bainite and residual austenite. The addition of Cu content from 0.24% to 0.53% in weld metal can decrease phase transition temperature, which induces the reduction of martensite-austenite (M/A) amount from 0.62% to 0.31%, the variation of M/A shape from small bulk and bar to granular shape, the increase of residual austenite amount, and the remarkable refining of microstructure. The increase of Cu content from 0.24% to 0.53% results in the decrease of the mean size of lath block from 2.18 to 1.99 μm, the decrease of the width of lath from 0.39 to 0.36 μm, and the increase of the amount of large angle boundary, which can inhibit crack propagation, from 68.5% to 71.0%. Analysis indicates that Cu can decrease phase transition temperature, increase the stability of austenite, raise the pontential difference between ferrite free energy (Gα) and austenite free energy (Gγ), reduce the critical size of crystal nucleation. Meanwhile, low phase transition temperature can retard the diffusion rate of carbon atom and slower the growth rate of crystal grains. These factors result in the refining of substructure.

Key wordsHSLA steel    weld metal    phase transition temperature    microstructure transformation    microstructure refining
收稿日期: 2012-02-20     
基金资助:

国家重点基础研究发展计划资助项目2010CB630800

作者简介: 彭云, 男, 1963年生, 教授级高工, 博士

[1] Li S B, Zhang J X. Dev Appl Mater, 2001; 16(6): 39

(李少兵, 张俊旭. 材料开发与应用, 2001; 16(6): 39)

[2] Montemarano T W. J Ship Prod, 1986; 2: 145

[3] Wang S C, Kao P. J Mater Sci, 1993; 28: 5169

[4] Thompson S W, Krauss G. Metall Trans, 1996; 27A: 1573

[5] Ren H P, Liu Z C, Wang H Y, Guo F L. Trans Mater Heat Treat, 2007; 28(suppl): 119

(任慧平, 刘宗昌, 王海燕, 郭凤莲. 材料热处理学报, 2007; 28(增刊): 119)

[6] Avazkonandeh M H, Haddad M, Haerian A. Mater Des, 2009; 30: 1902

[7] Babu S S. Curr Opin Solid State Mater Sci, 2004; 8: 67

[8] Farrar R A, Harrison P L. J Mater Sci, 1987; 22: 12

[9] Wang W, Liu S. Weld J, 2002; 81(7): 132

[10] Widgery D J. Met Constr, 1978; 10: 480

[11] Shackleton D. British Weld J, 1967; 1: 592

[12] Morito S, Tanaka H, Konishi H, Furuhara T, Maki T. Acta Mater, 2003; 6: 1789

[13] Singh S B, Bhadeshia H K. Mater Sci Eng, 1998; A245: 72

[14] Xue G, Zhang J H, Yao R G. China Weld, 2007; 16(1): 31

[15] Li S B, Zhang J X, Zhu B K. Weld Join, 2005; (11): 27

(李少兵, 张俊旭, 朱炳坤. 焊接, 2005; (11): 27)

[16] Essouni M, Beaven P A. Mater Sci Eng, 1990; S130: 173

[17] Hehemann A F, Kinsman K, Aaronson H I. Metall Trans, 1972; 5: 1077

[18] Yi H L, Ma Q S, Du L X, Lin X H, Wang G D. Mater Mech Eng, 2009; 33(6): 37

(衣海龙, 麻庆申, 杜林秀, 刘相华, 王国栋. 机械工程学报, 2009; 33(6): 37)

[19] Song W X. Metallography. Beijing: Metallurgy Industry Press, 2008: 374

(宋微锡. 金属学. 北京: 冶金工业出版社, 2008: 374)

[20] Gao X L, Fu G Q, Deng Z Y, Lin G M, Zhu M Y. Chin JProcess Eng, 2010; 10: 998

(高新亮, 付贵勤, 邓志银, 林光铭, 朱苗勇. 过程工程学报, 2010; 10: 998)

[21] Onck P R, Andrews E W, Gibson L J. Int J Mech Sci, 2001; 43: 681

[22] Zhang Y Q, Zhang R J, Su H, Li L. Iron Steel, 2003; 38: 45

(张永权, 张荣久, 苏航, 李丽. 钢铁, 2003; 38: 45)

[23] Hwang B, Kin Y G, Lee S, Kim Y M, Kim N J, Yoo J Y. Metall Mater Trans, 2005; 36A: 2107

[24] Zhao L, Zhang X D, Chen W Z. Acta Metall Sin, 2005; 41: 392

(赵 琳, 张旭东, 陈武柱. 金属学报, 2005; 41: 392)

[25] Bonnevie E, Ferri`ere G, Ikhlef A. Mater Sci Eng, 2004; A385: 352

[26] Davis C L, King J E. Mater Sci Technol, 1993; 9: 8

[27] Ju D C, Zhu P X, Yan H C, Liu J Q. Metall Collect, 2008; (2): 41

(居殿春, 竺培显, 颜慧成, 刘家琪. 冶金丛刊, 2008; (2): 41)

[28] Cui Z Q. Metallography and Heat Treatment. Beijing: China Machine Press, 1999: 39

(崔忠圻. 金属学与热处理. 北京: 机械工业出版社, 1999: 39)

[29] Fang H S, Wang J J, Yang Z G, Li C M, Bo X Z, Zheng Y K. Bainite Transformation. Beijing: Science Press, 1999: 370

(方鸿生, 王家军, 杨志刚, 李春明, 薄详正, 郑燕康. 贝氏体相变.北京: 科学出版社, 1999: 370)

[30] Xu Z, Zhao L C. Transformation Theory of Metal in Solid. Beijing: Science Press, 2004: 120

(徐 洲, 赵连城. 金属固态相变原理. 北京: 科学出版社, 2004: 120)

[31] Diazfuentes M, Izamendia A, Gutierrez I. Metall Mater Trans, 2003; 34A: 2005

[32] Sa S Y, Wang P. Chin J Nonferrous Met, 2010; 20(Spec.): 429

(撒世勇, 王平. 中国有色金属学报, 2010; 20(特刊): 429)

[1] 刘洁, 徐乐, 史超, 杨少朋, 何肖飞, 王毛球, 时捷. 稀土Ce对非调质钢中硫化物特征及微观组织的影响[J]. 金属学报, 2022, 58(3): 365-374.
[2] 李根, 兰鹏, 张家泉. 基于Ce变质处理的TWIP钢凝固组织细化[J]. 金属学报, 2020, 56(5): 704-714.
[3] 杜瑜宾, 胡小锋, 张守清, 宋元元, 姜海昌, 戎利建. 1.4%CuHSLA钢的组织和力学性能[J]. 金属学报, 2020, 56(10): 1343-1354.
[4] 安同邦,魏金山,单际国,田志凌. 保护气成分对1000 MPa级高强熔敷金属组织特征的影响[J]. 金属学报, 2019, 55(5): 575-584.
[5] 徐滨士,方金祥,董世运,刘晓亭,闫世兴,宋超群,夏丹. FV520B不锈钢激光熔覆热影响区组织演变及其对力学性能的影响*[J]. 金属学报, 2016, 52(1): 1-9.
[6] 安同邦,田志凌,单际国,魏金山. 保护气对1000 MPa级熔敷金属组织及力学性能的影响*[J]. 金属学报, 2015, 51(12): 1489-1499.
[7] 吴斯, 李秀程, 张娟, 尚成嘉. Nb对中碳钢相变和组织细化的影响*[J]. 金属学报, 2014, 50(4): 400-408.
[8] 邸新杰, 邢希学, 王宝森. Inconel 625熔敷金属中δ相的形核与粗化机理*[J]. 金属学报, 2014, 50(3): 323-328.
[9] 李俊杰,Godfrey Andrew,刘伟. 奥氏体化与冷却速率对过共析钢组织的影响[J]. 金属学报, 2013, 49(5): 583-592.
[10] 杨成功,单际国,任家烈. TiNi形状记忆合金激光焊接焊缝金属相变温度的控制[J]. 金属学报, 2013, 49(2): 199-206.
[11] 贾晓帅,左训伟,陈乃录,黄坚,唐新华,戎咏华. 经新型Q-P-T工艺处理后Q235钢的组织与性能[J]. 金属学报, 2013, 49(1): 35-42.
[12] 高古辉 张寒 白秉哲. 回火温度对Mn系低碳贝氏体钢的低温韧性的影响[J]. 金属学报, 2011, 47(5): 513-519.
[13] 杨成功 单际国 温鹏 任家烈. 激光焊接参数对TiNi合金相变温度的影响[J]. 金属学报, 2011, 47(10): 1277-1284.
[14] 李龙飞 李伟 孙祖庆 杨王玥. 基于离异共析转变的共析钢组织细化[J]. 金属学报, 2009, 45(6): 704-710.
[15] 周吉学; 汪彬; 童文辉; 杨院生 . Sr对AZ91D镁合金枝晶生长和相析出的影响[J]. 金属学报, 2007, 43(11): 1171-1175 .