Please wait a minute...
金属学报  2012, Vol. 48 Issue (1): 76-84    DOI: 10.3724/SP.J.1037.2011.00530
  论文 本期目录 | 过刊浏览 |
新型医用Ti-24Nb-4Zr-8Sn合金在Hanks溶液中的电化学腐蚀行为研究
白芸1, 2), 李述军1), 郝玉琳1), 杨锐1)
1) 中国科学院金属研究所沈阳材料国家(联合)实验室, 沈阳 110016
2) 鞍山师范学院化学系, 鞍山 114005
ELECTROCHEMICAL CORROSION BEHAVIOR OF A NEW BIOMEDICAL Ti-24Nb-4Zr-8Sn ALLOY IN HANKS SOLUTION
BAI Yun1, 2),  LI Shujun1), HAO Yulin1), YANG Rui1)
1) Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2) Chemistry Department, Anshan Normal University, Anshan 114005
引用本文:

白芸 李述军 郝玉琳 杨锐. 新型医用Ti-24Nb-4Zr-8Sn合金在Hanks溶液中的电化学腐蚀行为研究[J]. 金属学报, 2012, 48(1): 76-84.
, , , . ELECTROCHEMICAL CORROSION BEHAVIOR OF A NEW BIOMEDICAL Ti-24Nb-4Zr-8Sn ALLOY IN HANKS SOLUTION[J]. Acta Metall Sin, 2012, 48(1): 76-84.

全文: PDF(2306 KB)  
摘要: 采用极化曲线分析、电化学阻抗谱(EIS)测试和浸泡实验的方法, 并结合XPS, XRD和SEM等分析手段对新型医用Ti-24Nb-4Zr-8Sn合金在37 ℃的Hanks人工模拟体液中的电化学腐蚀行为进行了研究, 并与纯Ti和Ti-6Al-4V合金进行了比较. 结果表明: 在37 ℃的Hanks溶液中, Ti-24Nb-4Zr-8Sn合金的腐蚀电流密度与纯Ti相等, 并且钝化性能优于纯Ti和Ti-6Al-4V, 这与其钝化膜中存在大量的 Nb2O5密切相关; EIS结果显示, Ti-24Nb-4Zr-8Sn合金表面形成内层致密而外层疏松的双层钝化膜结构, 致密层特性对材料的耐蚀性能起到决定性作用; 随着浸泡时间的延长, 致密内层的电阻大幅度提高, Ti-24Nb-4Zr-8Sn合金的耐蚀性能增强, 同时疏松外层中的微缺陷发展成为宏观裂纹, 造成疏松外层整体脱落.
关键词 Ti-24Nb-4Zr-8Sn合金Hanks溶液极化曲线EIS    
Abstract:Titanium and its alloy have been widely used in medical applications owing to their light weight, low elastic modulus, good corrosion resistance and biocompatibility. A new multifunctional β-type titanium alloy Ti-24Nb-4Zr-8Sn has been developed recently for intention of biomedical applications. In comparison with the previously reported alloys, it possesses better biomechanical properties of high strength and low elastic modulus. Since corrosion resistance of biomaterials in human body environment plays important role on bio-safety, it is crucial to evaluate their corrosion behavior in simulated body fluid (SBF). In this paper, the electrochemical corrosion behavior of Ti-24Nb-4Zr-8Sn alloy was investigated in Hanks solution at 37 ℃ by utilizing potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques while XPS, XRD and SEM were employed to analyze the surface morphology, composition and phase constituent. Both commercially  pure titanium (CP-Ti) and Ti-6Al-4V alloy were also investigated to make a comparison. Ti-24Nb-4Zr-8Sn alloy has equiaxed microstructure with the averaged grain size about 200 $\mu$m. In Hanks solution, it exhibits a typical active-passive characterization by the formation of a protective passive film. XPS analyses revealed the passive film mainly consisting of TiO2, Nb2O5 and a little quantity of ZrO2 and SnO2. Since the formation of Nb5+ cations that locate in the crystal lattice of titanium oxide, can cause a decrease in the concentration of defects in the passive film and makes it more stoichiometric and stable, Ti-24Nb-4Zr-8Sn alloy presents much wider passivation region than CP-Ti and Ti-6Al-4V alloy, and its corrosion current density is only 0.049 µA/cm2 which is equal to that of CP-Ti. The EIS results indicated the presence of a double layer passive film with a porous outer layer and a dense inner one on the surface of Ti-24Nb-4Zr-8Sn alloy. The resistance of the dense inner layer can reach to the order of 106 Ω·cm2, which is much higher than that of the porous outer layer. This indicates that the corrosion resistance of Ti-24Nb-4Zr-8Sn alloy is determined mainly by the dense inner layer. With the immersion time increasing, the inner barrier layer became thicker and its resistance increased, resulting in the improvement of corrosion resistance. The study also found that some of the micro-defects formed in the outer porous layer changed to macro cracks and caused a rapid breakaway of the porous layer due to the binding force between two layers decreasing.
Key wordsTi-24Nb-4Zr-8Sn alloy    Hanks solution    potentiodynamic polarization    EIS
收稿日期: 2011-08-19     
ZTFLH: 

TG 146.2+3

 
基金资助:

国家重点基础研究发展计划项目2012CB619103和2012CB933901, 国家高技术研究发展计划项目2011AA030106, 国家自然科学基金项目51071152和50901080及辽宁省自然科学基金项目20092075资助

作者简介: 白芸, 女, 1975年生, 博士生
[1] Fekry A M, Ei–Sherif R M. Electrochim Acta, 2009; 54: 7280

[2] Mu Z Q, Liang C H. Corros Sci Prot Technol, 1998; 10: 103

(牟战旗, 梁成浩. 腐蚀科学与防护技术, 1998; 10: 103)

[3] Shukla A K, Balasubramaniam R, Bhargava S. Intermetallics, 2005; 13: 631

[4] Cai Z, Shafer T, Watanabe L, Nunn M E, Okabe T. Biomaterials, 2003; 24: 213

[5] Tamilselvi S, Murugaraj R, Rajendran N. Mater Corros, 2007; 58: 113

[6] Sumner D, Gatante J. Clin Orthop Rel Res, 1992; 274: 124

[7] Wang K. Mater Sci Eng, 1996; A213: 134

[8] Niinomi M. Mater Sci Eng, 1998; A243: 231

[9] Hao Y L, Li S J, Sun S Y. Acta Biomater, 2007; 3: 277

[10] Hao Y L, Li S J, Sun S Y. Mater Sci Eng, 2006; A441: 112

[11] Semlitsch M F, Weber H, Streicher R M, Schon R. Biomaterials, 1992; 13: 781

[12] Gurappa I. Mater Charact, 2002; 49: 73

[13] Mareci D, Ungureanu G, Aelenei D M, Rosca J CM. Mater Corros, 2007; 58: 848

[14] Gonzalez J E G, Mirza–Rosca J C. J Electroanal Chem, 1999; 471: 109

[15] Koike M, Cai Z, Fujii H, Brezner M, Okabe T. Biomaterials, 2003; 24: 4541

[16] Choubey A, Balasubramaniam R, Basui B. J Alloy Compd, 2004; 381: 288

[17] Pourbaix M. Biomaterials, 1984; 5: 122

[18] Metikos–Hukovic M, Kwokal A, Piljac J. Biomaterials, 2003; 24: 3765

[19] Macdonald D D. J Electrochem Soc, 1992; 139: 3434

[20] Cheng Y C, Zhang C B, Hu J, Tang C B, Gao B. Chin J Conserv Dent, 2010; 20: 84

(程义成, 张春宝, 胡 江, 唐长斌, 高 勃. 牙体牙髓牙周病学杂志, 2010; 20: 84)

[21] Alves V A, Reis R Q, Santos J C B, Souza D G. Corros Sci, 2009; 51: 2473

[22] Tamilselvi S, Rajendran N. Mater Corros, 2007; 58: 285

[23] Assis S L, Costa I. Mater Corros, 2007; 58: 329

[24] Zhu Z Q, Xue W B, Lu L, Du J C, Liu G J, Li W F. Acta Metall Sin, 2011; 47: 74

(朱振庆, 薛文斌, 鲁亮, 杜建成, 刘贯军, 李文芳. 金属学报, 2011; 47: 74)

[25] Pouilleau J, Devilliers D, Garrido F, Durand–Vidal S, Mahe E. Mater Sci Eng, 1997; B47: 235

[26] Pourbaix M. Atlas of Electrochemical Equilibria in Aqueoussolution. Brussels: Pergamon Press Ltd, 1966: 49

[27] Freitas M, Bulhoes L. J Appl Electrochem, 1997; 27: 612

[28] Zhou B X, Li Q, Liu W Q, Yao M Y, Chu Y L. Rare Met Mater Eng, 2006; 26: 1009

(周邦新, 李强, 刘文庆, 姚美意, 褚于良. 稀有金属材料工程, 2006; 26: 1009)
[1] 高博文, 王美涵, 闫茂成, 赵洪涛, 魏英华, 雷浩. 2024铝合金表面PEDOT涂层的电化学制备及耐腐蚀性能[J]. 金属学报, 2020, 56(11): 1541-1550.
[2] 王家贞,王俭秋,韩恩厚. 800合金在300 ℃ NaOH和ETA溶液中的腐蚀行为*[J]. 金属学报, 2016, 52(5): 599-606.
[3] 岑升波,陈辉,刘艳,马元明,吴影. CeO2对超音速火焰喷涂WC-12Co涂层腐蚀行为的影响*[J]. 金属学报, 2016, 52(11): 1441-1448.
[4] 刘侠和, 吴欣强, 韩恩厚. 温度对国产核级316L不锈钢在加Zn水中电化学腐蚀性能的影响*[J]. 金属学报, 2014, 50(1): 64-70.
[5] 周小卫,沈以赴. Ni-CeO2纳米镀层在酸性NaCl溶液中的腐蚀行为及电化学阻抗谱特征[J]. 金属学报, 2013, 49(9): 1121-1130.
[6] 赵博 杜翠薇 刘智勇 李晓刚 杨吉可 李月强. 剥离涂层下的X80钢在鹰潭土壤模拟溶液中的腐蚀行为[J]. 金属学报, 2012, 48(12): 1530-1536.
[7] 黄发 王俭秋 韩恩厚 柯伟. 硼酸缓冲溶液中Cl-浓度和温度对690合金腐蚀行为的影响[J]. 金属学报, 2011, 47(7): 809-815.
[8] 陈雯 杜荣归 胡融刚 时海燕 朱燕峰 林昌健. 模拟混凝土孔隙液中钢筋表面膜组成与腐蚀行为的关联[J]. 金属学报, 2011, 47(6): 735-742.
[9] 王长罡 董俊华 柯伟 陈楠. 硼酸缓冲溶液中pH值和Cl-浓度对Cu腐蚀行为的影响[J]. 金属学报, 2011, 47(3): 354-360.
[10] 朱庆振 薛文斌 鲁亮 杜建成 刘贯军 李文芳. (Al2O3-SiO2)sf/AZ91D镁基复合材料微弧氧化膜的制备及电化学阻抗谱分析 制备及电化学阻抗谱分析[J]. 金属学报, 2011, 47(1): 74-80.
[11] 杨波 李谋成 姚美意 周邦新 沈嘉年. 高温高压水环境中锆合金腐蚀的原位阻抗谱特征[J]. 金属学报, 2010, 46(8): 946-950.
[12] 万先松 师玉英 马军 李海庆 宫骏 孙超. 电弧离子镀CrN涂层盐雾腐蚀行为[J]. 金属学报, 2010, 46(5): 600-606.
[13] 向红亮 黄伟林 刘东 何福善. N含量对29Cr铸造超级双相不锈钢组织及性能的影响[J]. 金属学报, 2010, 46(3): 304-310.
[14] 周建龙 李晓刚 杜翠薇 李云玲 李涛 潘莹. X80管线钢在NaHCO3溶液中的阳极电化学行为[J]. 金属学报, 2010, 46(2): 251-256.
[15] 邹妍 郑莹莹 王燕华 王佳 . 低碳钢在海水中的阴极电化学行为[J]. 金属学报, 2010, 46(1): 123-128.