Please wait a minute...
金属学报  2012, Vol. 48 Issue (1): 85-93    DOI: 10.3724/SP.J.1037.2011.00537
  论文 本期目录 | 过刊浏览 |
HCO3-和SO42-对Cu点蚀行为的影响
王长罡, 董俊华, 柯伟, 陈楠
中国科学院金属研究所金属腐蚀与防护国家重点实验室, 沈阳 110016
EFFECTS OF HCO3- AND SO42- ON THE PITTING CORROSION BEHAVIOR OF Cu
WANG Changgang, DONG Junhua, KE Wei, CHEN Nan
State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

王长罡 董俊华 柯伟 陈楠. HCO3-和SO42-对Cu点蚀行为的影响[J]. 金属学报, 2012, 48(1): 85-93.
, , , . EFFECTS OF HCO3- AND SO42- ON THE PITTING CORROSION BEHAVIOR OF Cu[J]. Acta Metall Sin, 2012, 48(1): 85-93.

全文: PDF(3654 KB)  
摘要: 在不同浓度配比的HCO3-和SO42-混合溶液中, 利用循环极化电化学测试方法和 SEM, 对Cu工作电极的循环极化行为和点蚀表面形貌进行了系统的研究. 结果表明, 在高电位范围的循环极化实验中, Cu的点蚀行为可分为活性溶解型点蚀和钝化膜破裂型点蚀; 随SO42-浓度的升高Cu点蚀的敏感性增大. 由于HCO3-与SO42-的协同作用, 随HCO3-浓度升高点蚀敏感性呈先增大后减小的规律. 在钝化膜破裂型点蚀中, SO42-提高Cu点蚀的诱发能力; HCO3-降低Cu点蚀的诱发能力. 2种离子对点蚀自修复能力的影响无明显规律.
关键词 高放废物地质处置Cu点蚀循环极化HCO3SO42-    
Abstract:As a kind of clean, efficient and relatively safe energy, nuclear energy has been widely used around the world. The high-level radioactive waste generated in the nuclear has also become a major risk, so the disposal safety of high-level radioactive waste will be especially important. The strategy for disposal of high-level radioactive waste in China is to enclose the spent nuclear fuel in sealed metal canisters which are embedded in bentonite clay hundreds meters down in the bed-rock. The choice of container material depends largely on the redox conditions and the aqueous environment of the repository. One of the choices for the fabrication of waste canisters is Cu, because it is thermodynamically stable under the saline, anoxic conditions over the large majority of the container lifetime. For this advantage, some other countries (Canada, Sweden) have selected Cu as the material of nuclear waste container. However, in the early aerobic phase of the geological disposal the corrosion of Cu could take place, and the corrosion behavior of Cu would be influenced by the complex chemical conditions of groundwater markedly. Pitting corrosion of Cu often take place in power plants or air--conditioning condensate water. The corrosion environment usually contains HCO3-, SO42- and Cl- ions. In the early stage of geological disposal, if the aerobic water with HCO3-, SO42-and Cl- immersion repository, the pitting corrosion of Cu may occur. The content of HCO3- and SO42- in the water chemistry environment, as well as the synergy between them, could affect the behavior of pitting seriously. In this work, the cycle polarization behavior and surface morphology of pitting has been investigated in HCO3- and SO42- mixed solution, respectively by electrochemical cyclic polarization test and SEM. The results showed that the pitting corrosion behavior of Cu can be divided into the type of active dissolve and the type of film rupture; SO42- could increase Cu pitting sensitivity in both of the two types pitting corrosion. Due to synergies with the SO42-, HCO3- could increase the pitting susceptibility first and then reduce the law. In passive film rupture pitting system, SO42- could improve the ability of induce pitting; HCO3- could reduce the ability of induce pitting. There is no significant impact on pitting self--healing capacity by the two ions.
Key wordshigh-level radioactive waste    Cu pitting    cyclic polarization    HCO3-    SO42-
收稿日期: 2011-08-24     
基金资助:

国家自然科学基金资助项目51071160

作者简介: 王长罡, 男, 1985年生, 博士生
[1] Wang C G, Dong J H, Ke W, Chen N. Acta Metall Sin, 2011; 47: 354

(王长罡, 董俊华, 柯伟, 陈 楠. 金属学报, 2011; 47: 354)

[2] Cheng Y L, Zhang J Q. Acta Metall Sin, 2002; 38: 74

(程英亮, 张鉴清. 金属学报, 2002; 38: 74)

[3] Liu G Q, Zhu Z Y, Ke W. Acta Metall Sin, 2001; 37: 272

(刘国强, 朱自勇, 柯 伟. 金属学报, 2001; 37: 272)

[4] Zhou X Y, Ke W, Zang Q S. Acta Metall Sin, 1990; 26: 110

(周向阳, 柯伟, 臧启山. 金属学报, 1990; 26: 110)

[5] Yan Z, Xian A P. Acta Metall Sin, 2011; 47: 1327

(颜 忠, 冼爱平. 金属学报, 2011; 47: 1327)

[6] Cao G L, Li G M, Chen S, Chang W S, Chen X Q. Acta Metall Sin, 2011; 47: 145

(曹国良, 李国明, 陈 珊, 常万顺, 陈学群. 金属学报, 2011; 47: 145)

[7] Darren A L, Mallikarjuna N N. Corros Sci, 2010; 52: 1927

[8] Fujii T, Kodama T, Baba H. Corros Sci, 1984; 24: 901

[9] Drogowska M, Brossard L, M´enard H. Surf Coat Technol, 1988; 34: 383

[10] Drogowska M, Brossard L, Menard H. J Electrochem Soc, 1992; 139: 39

[11] Duthil J P, Mankowski G, Giusti A. Corros Sci, 1996; 38: 1839

[12] Reda M R, Alhajji J N. Corrosion, 1996; 3: 232

[13] Cantor A F, Park J K, Vaiyavatjamai P. J Am Water Works Association, 2003; 95(5): 112

[14] Pourbaix M. J Electrochem Soc, 1976; 123: C25

[15] Mankowski G, Duthil J P, Giusti A. Corros Sci, 1997; 39: 27

[16] Milosev I, Metikos–Hukovic M, Drogowska M, Menard H, Brassard L. J Electrochem Soc, 1992; 139: 2409

[17] Cong H, Michels H T, Scully J R. J Electrochem Soc, 2009; 156: C16

[18] Cong H, Scully J R. J Electrochem Soc, 2010; 157: C200

[19] Cong H, Scully J R. J Electrochem Soc, 2010; 157: C36

[20] Christy A G, Lowe A, Otieno–Alego V, Stoll M, Webster R D. J Appl Electrochem, 2004; 34: 225

[21] Abd El Meguid E A, Awad N K. Corros Sci, 2009; 51: 1134

[22] Cao C N. Corrosion Electrochemical Theory. 2nd Ed., Beijing: Chemical Industry Press, 2004: 287

(曹楚南. 腐蚀电化学原理. 第二版, 北京: 化学工业出版社, 2004: 287)
[1] 李恺强, 杨璐嘉, 徐云泽, 王晓娜, 黄一. SO42-对模拟孔隙液中Q235B钢筋腐蚀行为的影响[J]. 金属学报, 2019, 55(4): 457-468.
[2] 卢云飞,董俊华,柯伟. SO42-对NiCu低合金钢在除氧NaHCO3溶液中腐蚀行为的影响[J]. 金属学报, 2015, 51(9): 1067-1076.
[3] 卢云飞, 阳靖峰, 董俊华, 柯伟. NiCu低合金钢在含Cl-的除氧NaHCO3溶液中的腐蚀行为研究[J]. 金属学报, 2015, 51(4): 440-448.
[4] 王长罡,董俊华,柯伟,李晓芳. HCO3-, SO42-和Cl-混合体系中Cu点蚀行为的研究[J]. 金属学报, 2013, 49(2): 207-213.
[5] 魏欣,董俊华,佟健,郑志,柯伟. 温度对Cr26Mo1超纯高铬铁素体不锈钢在3.5%NaCl溶液中耐点蚀性能的影响[J]. 金属学报, 2012, 48(4): 502-507.
[6] 王长罡 董俊华 柯伟 陈楠 李晓芳. HCO3-和Cl-混合体系中Cu的点蚀行为研究[J]. 金属学报, 2012, 48(11): 1365-1373.
[7] 王长罡 董俊华 柯伟 陈楠. 硼酸缓冲溶液中pH值和Cl-浓度对Cu腐蚀行为的影响[J]. 金属学报, 2011, 47(3): 354-360.
[8] 阳靖峰 董俊华 柯伟. 重碳酸盐溶液中SO42-和Cl-对低碳钢活化/钝化腐蚀行为的影响[J]. 金属学报, 2011, 47(10): 1321-1326.
[9] 李付绍 安茂忠 刘光洲 段东霞. 硫酸盐还原菌对18--8不锈钢点蚀行为的影响[J]. 金属学报, 2009, 45(5): 536-540.