Please wait a minute...
金属学报  2009, Vol. 45 Issue (9): 1049-1056    
  论文 本期目录 | 过刊浏览 |
α2-Ti-25Al-xNb合金力学性质的第一原理计算
曾宪波;彭平
湖南大学材料科学与工程学院; 长沙 410082
CALCULATION OF MECHANICAL PROPERTIES OF α2-Ti-25Al-xNb ALLOYS BY FIRST-PRINCIPLES
ZENG Xianbo; PENG Ping
School of Materials Science and Engineering; Hunan University; Changsha 410082
引用本文:

曾宪波 彭平. α2-Ti-25Al-xNb合金力学性质的第一原理计算[J]. 金属学报, 2009, 45(9): 1049-1056.
. CALCULATION OF MECHANICAL PROPERTIES OF α2-Ti-25Al-xNb ALLOYS BY FIRST-PRINCIPLES[J]. Acta Metall Sin, 2009, 45(9): 1049-1056.

全文: PDF(901 KB)  
摘要: 

采用第一原理赝势平面波方法计算了D019结构的α2-Ti-25Al-xNb(x=0-12, 原子分数, %) 晶体的弹性模量(B, GE) 和抗拉强度 (σb), 并利用Cauchy压力(c12-c44)与G/B比值表征和评判了不同浓度Nb合金化时α2-Ti-25Al-xNb合金的韧脆化倾向. 结果表明: 在 x=2-12时, α2-Ti-25Al-xNb晶体的抗拉强度 (σb)与α2相合金的弹性模量(B, EG)随$x$增加而增大; 在x=0-6时, α2-Ti-25Al-xNb合金脆性有一定改善, 且x值越大韧化效果越好; 但在x=7-9 时, 相对于α2-Ti3Al, 合金脆性不但没有得到弱化, 反而随x增加而加剧; 随后, 当x进一步增大时, 合金脆性又随x增加再次得到改善, 至x=12时, α2-Ti-25Al-xNb合金的韧化效果最好. 通过电子态密度 (DOS) 和投影电子态密度 (PDOS)等电子结构的分析, 初步解释了Nb的这种强化与韧化作用.

关键词 α2-Ti3AlNb合金化力学性质第一原理计算-Ti3AlNb合金化力学性质第一原理计算    
Abstract

Intermetallic alloys based on Ti3Al are potential high-temperature structural materials due to their low density, high specific strength, excellent creep behavior and good oxidation resistance, but their application has been hampered by the low room--temperature ductility and ambient brittleness. Numerous experiments have shown Nb is most effective additive to improve their ductility and toughness at low temperature, but the influence of Nb content on the mechanical properties of Ti3Al-based alloys has not been understood. In this work, using the first-principles pseudo--potential plane wave method, ultimate tensile strength σb of α2-Ti-25Al-xNb (x=0-12, atomic fraction, %) single crystal with D019 structure and bulk modulus B, Young's modulus E as well as shear modulus G of α2-Ti-25Al-xNb polycrystalline alloys have been calculated, and their ductile/brittle behavior is characterized and assessed by the Cauchy pressure (c12-c44) and the G/B ratio. The results reveal the ultimate tensile strength σb of α2-Ti-25Al-xNb crystals and the elastic moduli (B, E, G) of α2-Ti-25Al-xNb alloys monotonously increase with the addition of Nb in the whole range of x=0-12. Meanwhile a very sensitive ductile/brittle behavior of α2-Ti-25Al-xNb alloys to Nb content is also detected. The addition of Nb with low content is demonstrated to be profitable for weakening of the brittleness of α2-Ti3Al alloys, and the toughening tendency of α2-Ti-25Al-xNb alloys increases as increasing Nb addition in the range of =0-6. Whereas in the range of x=7-9, relative to α2-Ti3Al alloys no toughening effect can be seen as Ti in Ti3Al being partially substituted by Nb. As x≥10, the toughening effect of Nb addition is activated again, and an obvious improvement in the ductility and strength of α2-Ti-25Al-12Nb alloy is observed as comparing with α2-Ti-25Al-6Nb alloy. For this toughening and strengthening effect of Nb addition a reasonable explain was given by means of the analysis of the density of states (DOS) and the projective density of states (PDOS) of α2-Ti-25Al-xNb (x=0, 6, 7, 12) crystals.

Key wordsα2-Ti3Al    Nb alloying    mechanical property    first-principles calculation
收稿日期: 2009-02-10     
ZTFLH: 

TG113.25

 
基金资助:

国家重点基础研究发展计划项目2006CB605104和国家自然科学基金项目50771044资助

作者简介: 曾宪波, 男, 1984年生, 硕士生

[1] Ward C H, Williams J C, Thompson A W. Scr Metall Mater, 1993; 28: 1017
[2] Leyens C, Peters M. Titanium and Titanium Alloys. Weinheim: Wiley–VCH, 2003: 54
[3] Zou J, Fu C L, Yoo M H. Intermetallics, 1995; 3: 265
[4] Ravi C, MathiJaya S, Valsakumar M C, Asokamani R. Phys Rev, 2002; 65B: 155118
[5] Banerjee D, Gogia A K, Nandy T K, Joshi V A. Acta Metall, 1988; 36: 871
[6] Kestner–Weykamp H T, Ward C H, Broderick T F, Kaufman M J. Scr Metall, 1989; 23: 1697
[7] Hu Q M, Yang R, Xu D S, Hao Y L, Li D,Wu W T. Phys Rev, 2003; 68B: 054102
[8] Kamat S V, Gogia A K, Banerjee D. Acta Mater, 1997; 46: 239
[9] Kim Y W, Froes F H. In: Whang S H, Liu C T, Pope D P, Stiegler J O, eds., High–Temperature Aluminides and Intermetallics. Warrendale: TMS, 1990: 465
[10] Paradkar A, Kamat S V, Gogia A K, Kashyap B P. Mater Sci Eng, 2008; A491: 390
[11] Cao J X, Bai F, Li Z X. Mater Sci Eng, 2006; A424: 47
[12] Gogia A K, Nandy T K, Banerjee D, Carisey T, Strudel J L, Franchet J M. Intermetallics, 1998; 6: 741
[13] Xu D S, Song Y, Li D, Hu Z Q. Mater Sci Eng, 1997; A234: 230
[14] Hao Y L, Xu D S, Cui Y Y, Yang R, Li D. Acta Mater, 1999; 47: 1129
[15] Song Y. PhD Thesis, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 1997
(宋岩. 中国科学院金属研究所博士学位论文, 沈阳, 1997)
[16] Music D, Schneider J M. Phys Rev, 2006; 74B: 174110
[17] Liu Y L, Liu L M, Wang S Q, Ye H Q. Intermetallics, 2007; 15: 428
[18] Segall M D, Lindan P J D, ProbertMJ, Pickard C J, Hasnip P J, Clark S J, Paynel M C. J Phys Condens Mater, 2002; 14: 2717
[19] Vanderbilt D. Phys Rev, 1990; 41B: 7892
[20] Perdew J P, Burke K, Ernzerhof M. Phys Rev Lett, 1996; 77: 3865
[21] Fischer T H, Almlof J. J Phys Chem, 1992; 96: 9768
[22] Tanaka K, Okamoto K, Inui H, Minonishi Y, Yamaguchi M, Koiwa M. Philos Mag, 1996; 73A: 1475
[23] Fu C L, Zou J, Yoo M H. Scr Metall Mater, 1995; 33: 885
[24] Ramer N J, Rappe A M. Phys Rev, 2000; 62B: 743
[25] Souvatzia P, Katsnelson M I, Simak S, Ahuja R, Eriksson O, Mohn P. Phys Rev, 2004; 70B: 012201
[26] Hu Q K, Wu Q H, Ma Y M, Zhang L J, Liu Z Y, He J L, Sun H, Wang H T. Phys Rev, 2006; 73B: 214116
[27] Past W, Gregorova E. Ceram Silik, 2004; 48: 14
[28] Bercegeay C, Bernard S. Phys Rev, 2005; 72B: 214101
[29] Pugh S F. Philos Mag, 1954; 45: 823
[30] Pettifor D G. Mater Sci Technol, 1992; 8: 345
[31] Lu G H, Deng S H, Wang T M, Kohyama M, Yamamoto P. Phys Rev, 2004; 69B: 134106
[32] Luo W D, Roundy D, Cohen M L. Phys Rev, 2002; 66B: 94110
[33] Nielsen O H. Phys Rev, 1985; 32B: 3780
[34] Jahn´atek M, Krajc´? M, Hafner J. Phys Rev, 2005; 71B: 024101
[35] Kishida K, Yoshikawa J, Inui H, Yamaguchi M. Acta Mater, 1999; 47: 3405

[1] 赵宇宏, 景舰辉, 陈利文, 徐芳泓, 侯华. 装甲防护陶瓷-金属叠层复合材料界面研究进展[J]. 金属学报, 2021, 57(9): 1107-1125.
[2] 冯宇超, 邢炜伟, 王寿龙, 陈星秋, 李殿中, 李依依. ODS钢中氧化物/铁素体界面捕氢行为的第一原理研究[J]. 金属学报, 2018, 54(2): 325-338.
[3] 崔荣华, 王歆钰, 董正超, 仲崇贵. Mg1-xZnx合金的弹性和热力学性质的第一性原理研究[J]. 金属学报, 2017, 53(9): 1133-1139.
[4] 张茹,沈汉杰,张雅琴,李栋梁,李彦嘉,雍兴跃. 不锈钢表层对空化与电化学腐蚀交互作用的纳米力学响应[J]. 金属学报, 2013, 49(5): 614-620.
[5] 毛萍莉,于波,刘正,王峰,鞠阳. Mg-Zn-Ca合金中AB2型金属间化合物电子结构和弹性性质的第一性原理计算[J]. 金属学报, 2013, 49(10): 1227-1233.
[6] 周惦武 刘金水 徐少华 彭平. Al2Sr和Mg2Sr相结构稳定性与弹性性能的第一原理计算[J]. 金属学报, 2011, 47(10): 1315-1320.
[7] 赵宇飞 符跃春 胡青苗 杨锐. Ti1-xVx及Ti1-xNbx合金晶格参数、体模量及相稳定性的第一原理研究[J]. 金属学报, 2009, 45(9): 1042-1048.
[8] 聂耀庄; 谢佑卿; 李小波; 彭红建 . 金属Zr热力学性质的第一原理研究[J]. 金属学报, 2007, 43(7): 693-698 .
[9] 李虹; 刘利民; 王绍青; 叶恒强 . 氧原子在γ-TiAl(111)表面吸附的第一性原理研究[J]. 金属学报, 2006, 42(9): 897-902 .
[10] 王兴军; 常海威; 雷明凯 . Nb合金化γ-TiAl的氧化热力学理论分析[J]. 金属学报, 2001, 37(8): 810-814 .
[11] 易丹青; 杜若昕; 曹昱 . M5Si3型硅化物的研究及相关的物理冶金学问题[J]. 金属学报, 2001, 37(11): 1121-1130 .
[12] 刘军民;张进修. 共析转变过程中内耗与复模量行为的对比[J]. 金属学报, 1996, 32(8): 785-790.
[13] 魏炳波;董长星. 液态Ni-Fe合金的超过冷与热力学性质[J]. 金属学报, 1996, 32(4): 357-362.
[14] 曾文明;陈念贻;叶大伦. Sn-Sb合金的热力学性质研究[J]. 金属学报, 1996, 32(12): 1233-1237.
[15] 陈启元;曾文明;张平民;顾松青;杨冠群;周辉放;尹中林. 几种铝化合物的热力学性质[J]. 金属学报, 1996, 32(1): 6-14.