Please wait a minute...
金属学报  2009, Vol. 45 Issue (5): 559-565    
  论文 本期目录 | 过刊浏览 |
低碳Mn--Si钢中粒状组织转变研究
王勇围;许峰云;徐雪霞;白秉哲
(清华大学材料科学与工程系; 北京 100084)
RESEARCH ON TRANSFORMATION OF GRANULAR STRUCTURE IN LOW CARBON Mn–Si STEEL
WANG Yongwei; XU Fengyun; XU Xuexia; BAI Bingzhe
Deptartment of Materials Science and Engineering; Tsinghua University; Beijing 100084
引用本文:

王勇围 许峰云 徐雪霞 白秉哲. 低碳Mn--Si钢中粒状组织转变研究[J]. 金属学报, 2009, 45(5): 559-565.
, , , . RESEARCH ON TRANSFORMATION OF GRANULAR STRUCTURE IN LOW CARBON Mn–Si STEEL[J]. Acta Metall Sin, 2009, 45(5): 559-565.

全文: PDF(4503 KB)  
摘要: 

对低碳Mn--Si钢中的粒状组织进行了实验研究, 考察了粒状组织中小岛的形状及其分布. 结果表明, 不含Cr时, 空冷后形成了由先共析铁素体基体+岛状物所组成的粒状组织,其中的岛状物形态及分布可以是无规则的, 也可以是长条状的小岛沿一定方向分布于基体上. 对于这2种形态的粒状组织, 尤其是对后者形态的形成和铁素体基体的分析表明, 小岛的形状和分布是先共析铁素体形态的反映, 条形规则排列的小岛可能受先共析铁素体基体台阶长大机制控制, 粒状组织小岛在一定条件下也可能具有方向性. 加适量Cr后, 连续冷却后的组织中不出现粒状组织.

关键词 粒状组织粒状贝氏体铁素体基体台阶机制    
Abstract

Previous researches indicated that granular bainite (GB) and granular structure (GS) mainly differ in the shape and distribution of islands and the ferrite matrix: firstly, the GB islands distribute regularly and longitudinally in stripe shape, whereas the GS islands distribute disorderedly with irregular morphology; secondly, the matrix of the former is bainitic ferrite, however that of the latter is proeutectoid ferrite matrix. In addition, the properties of GB and GS differ significantly. Under specific conditions the strength and toughness of GB are superior to those of GS whose toughness is poor hence GS should be avoided in steels. It’s important for phase transformation theory study to understand the morphology of GS and its corresponding transformation condition completely; furthermore, its properties can be improved by microstructure optimization. The granular structures of low carbon Mn–Si steels, especially the distribution of GS islands were studied. It was found that the microstructure of steels without Cr after air–cooling is GS consisting of proeutectoid ferrite and islands which distribute in the two forms: irregular and directional respectively. Their forming mechanisms, including forming process of islands and type of proeutectoid ferrite were discussed. Results show that the morphology and distribution of the islands reflect the morphology of proeutectoid ferrite, and the strip islands formation may be controlled by the ledgewise growth of proeutectoid ferrite. There are three formation types for the strip GS islands: (1) long islands formed among Widmannstatten ferritic plates; (2) short and paralleled islands formed in massive proeutectoid ferrites which are formed by ledgewise mechanism; (3) broad and paralleled islands formed in massive ferrites growing along certain low–energy crystal faces. The GS islands may distribute directionally under specific conditions, and not all microstructures of ferrite matrix and paralleled islands are GB. In existence of proper content Cr no granular structure appears in the studied low carbon Mn–Si steel after continuous cooling.

Key wordsgranular structure    granular bainite    ferrite matrix    ledgewise mechanism
收稿日期: 2008-05-26     
ZTFLH: 

TG111

 
作者简介: 王勇围, 男, 1976年生, 博士生

[1] Fang H S, Bai B Z, Zheng X H, Zheng Y K, Chen X Y, Zhao R F. Acta Metall Sin, 1986; 22: A283
(方鸿生, 白秉哲, 郑秀华, 郑燕康, 陈秀云, 赵如发. 金属学报, 1986; 22: A283)
[2] Kang M K. Trans Met Heat Treat, 2000; 21(2): 2
(康沫狂. 金属热处理学报. 2000; 21(2): 2)
[3] Aaronson H I. Decomposition of Austenite by Diffusional Processs. New York: Interscience Publishers, 1962: 391
[4] Enomoto M. Metall Mater Trans, 1994; 25A: 1947
[5] Wu K M, Enomoto M. Scr Mater, 2002; 46: 569
[6] Wu K M, Kagayama M, Enomoto M. Mater Sci Eng, 2003; A343: 143
[7] Wu K M, Inagawa Y, Enomoto M. Mater Charact, 2004; 52: 121
[8] Yang L, Fang H S, Meng Z H. Acta Metall Sin, 1992; 28: A16
(杨 柳, 方鸿生, 孟至和. 金属学报, 1992; 28: A16)
[9] Enomoto M. Acta Mater, 1999; 47: 3533
[10] Guo H, Purdy G R, Enomoto M, Aaronson H I. Metall Mater Trans, 2006; 37A: 1721
[11] Huang W G, Fang H S, Zheng Y K. Heat Treat Met, 1997; 22(10): 25
(黄维刚, 方鸿生, 郑燕康. 金属热处理, 1997; 22(10): 25)

[1] 蒋中华, 杜军毅, 王培, 郑建能, 李殿中, 李依依. M-A岛高温回火转变产物对核电SA508-3钢冲击韧性影响机制[J]. 金属学报, 2021, 57(7): 891-902.
[2] 胡小锋, 姜海昌, 赵明久, 闫德胜, 陆善平, 戎利建. 一种Fe-Cr-Ni-Mo高强高韧合金钢焊接接头的组织和力学性能[J]. 金属学报, 2018, 54(1): 1-10.
[3] 蒋中华,王培,李殿中,李依依. 回火温度对2.25Cr-1Mo-0.25V钢粒状贝氏体显微组织和力学性能的影响*[J]. 金属学报, 2015, 51(8): 925-934.
[4] 潘涛, 王小勇, 苏航, 杨才福. 合金元素Al对微B处理特厚钢板淬透性及力学性能的影响*[J]. 金属学报, 2014, 50(4): 431-438.
[5] 冯春 方鸿生 白秉哲 郑燕康. 0.02%Nb空冷仿晶界型铁素体/粒状贝氏体复相钢的相变及强韧性[J]. 金属学报, 2010, 46(4): 473-478.
[6] 刘志远 杨志刚 李昭东 刘振清 张 弛. 界面反应--扩散混合控制模型下先共析铁素体生长动力学的模拟[J]. 金属学报, 2010, 46(4): 390-395.
[7] 康沫狂 张明星 刘峰 朱明. 金属合金等温相变的体激活能及相变机制 I. 钢的中温(贝氏体)等温相变[J]. 金属学报, 2009, 45(1): 25-31.
[8] 许峰云; 徐雪霞; 白秉哲; 方鸿生 . 粒状组织的相变残余应力[J]. 金属学报, 2008, 44(9): 1063-1068 .
[9] 尚成嘉; 王学敏; 周召槿; 梁鑫; 缪成亮; 贺信莱 . Mn-Mo-Nb-B低碳微合金钢中温转变组织的演化[J]. 金属学报, 2008, 44(3): 287-291 .
[10] 许峰云; 白秉哲; 方鸿生 . 马氏体岛的体积分数、形状及强度对粒状组织钢力学性能的影响[J]. 金属学报, 2008, 44(10): 1183-1187 .
[11] 王建平; 杨志刚; 白秉哲; 方鸿生; 冯勇; 徐洪庆 . 奥氏体形变对仿晶界型铁素体/粒状贝氏体复相钢组织和强韧性能的影响[J]. 金属学报, 2004, 40(3): 263-269 .
[12] 王建平; 杨志刚; 白秉哲; 方鸿生; 冯勇; 徐洪庆 . 奥氏体形变对仿晶界型铁素体 粒状贝氏体复相钢组织和强韧性能的影响[J]. 金属学报, 2004, 40(3): 263-269 .
[13] 徐平光; 方鸿生; 白秉哲; 杨志刚 . 仿晶界型铁素体/粒状贝氏体复相组织的韧性[J]. 金属学报, 2002, 38(3): 255-260 .
[14] 刘东升;王国栋;刘相华;甄立冬;苏永科;徐辉. P20钢变形奥氏体连续冷却时的相变规律[J]. 金属学报, 1998, 34(3): 271-277.
[15] 秦高梧;郝士明;宋丹. γ-TiAl基双相合金中初生α_2/γ片层的界面分析[J]. 金属学报, 1998, 34(12): 1279-1283.