Please wait a minute...
金属学报  2010, Vol. 46 Issue (4): 390-395    DOI: 10.3724/SP.J.1037.2009.00455
  论文 本期目录 | 过刊浏览 |
界面反应--扩散混合控制模型下先共析铁素体生长动力学的模拟
刘志远;杨志刚;李昭东;刘振清;张弛
清华大学材料科学与工程系先进材料教育部重点实验室; 北京 100084
SIMULATION OF LEDGEWISE GROWTH KINETICS OF PROEUTECTIOD FERRITE UNDER INTERFACIAL REACTION–DIFFUSION MIXED CONTROL MODEL
LIU Zhiyuan; YANG Zhigang; LI Zhaodong; LIU Zhenqing; ZHANG Chi
Key Laboratory of Advanced Materials of Ministry of Education; Department of Materials Science and Engineering; Tsinghua University; Beijing 100084
引用本文:

刘志远 杨志刚 李昭东 刘振清 张 弛. 界面反应--扩散混合控制模型下先共析铁素体生长动力学的模拟[J]. 金属学报, 2010, 46(4): 390-395.
, , , , . SIMULATION OF LEDGEWISE GROWTH KINETICS OF PROEUTECTIOD FERRITE UNDER INTERFACIAL REACTION–DIFFUSION MIXED CONTROL MODEL[J]. Acta Metall Sin, 2010, 46(4): 390-395.

全文: PDF(1177 KB)  
摘要: 

建立了界面反应-扩散混合控制模型用于描述先共析铁素体的台阶生长过程. 考虑C原子长程扩散和界面反应对铁素体生长的共同控制作用, 建立了混合控制机制下先共析铁素体生长动力学的理论模型. 运用该模型对先共析铁素体的台阶生长过程进行了模拟, 提出了决定先共析铁素体生长机制的控制因子S.S因子包含了碳扩散、界面迁移、相变温度以及成分的作用. 通过该因子可判别是C原子长程扩散还是界面反应在先共析铁素体生长中起主导作用.当S较小时, 铁素体生长以界面控制为主; 当S较大时, 铁素体的生长以扩散控制为主. 对Fe-1%C(原子分数)合金在720 ℃的等温γ→α转变进行了模拟, 所得结果与文献报道的实验结果符合较好.

关键词 先共析铁素体混合控制模型生长动力学台阶机制    
Abstract

A mixed control model considering both carbon diffusion and interfacial reaction is established for ledgewise growth kinetics of proeutectiod ferrite during  γ →α isothermal transformation in low carbon steels. In this model, the growth rate of ledgewise ferrite and the carbon concentration at the ledge riser are determined by both carbon diffusion at ledge riser in austenite and interfacial reaction rate of  γ →α transformation, which is different from the traditional local equilibrium(LE) model. Simulation is done by utlizing this model to analyze the ledgewise growth kinetics of proeutectiod ferrite. And based on analysis of the characteristics of growth kinetics of proeutectiod ferrite obtained by the simulation, a factor S, which includes the effects of carbon diffusion, interface migration, temperature and composition, is proposed to characterize the control mode of growth kinetics. By judging this factor S, we can predict that if the carbon diffusion or interfacial reaction dominates the gowth kinetics of proeutectiod ferrite. In the case that the value S is relatively small, the growth kintics is mainly controlled by interfacial reaction. In the case that the value of S is quite large, the growth kinetics is controlled by carbon diffusion, which returns to the traditional local equilibrium model. The mixed control simulation results for ledgewise growth of proeutectoid ferrite at 720 ℃ in Fe–1%C (atomic fraction) alloy show a good agreement with the experimental results previously reported.

Key wordsProeutectiod ferrite    mixed control model    growth kinetics    ledgewise mechanism
收稿日期: 2009-07-07     
基金资助:

国家自然科学基金项目50871059和高等学校博士学科点专项科研基金项目20070003006资助

作者简介: 刘志远, 男, 1986年生, 硕士生

[1] Sietsma J, van der Zwaag S. Acta Mater, 2004; 52: 4143
[2] Xu Z Y. Principle of Phase Change. Beijing: Science Press, 1988:1
(徐祖耀. 相变原理. 北京: 科学出版社, 1988: 1)
[3] Bhadeshia H K D H, Svensson L E, Gretoft B. Acta Metall, 1985; 33: 1271
[4] Vandermeer R A, Acta Metall Mater, 1990, 38: 2461
[5] Enomoto M. Metall Mater Trans, 2006; 37A: 1703
[6] Krielaart G P, Sietsma J, van der Zwaag S. Mater Sci Eng, 1997; A237: 216
[7] Onink M, Tichelaar F D, Brakman C M, Mittemeijer E J, van der Zwaag S. J Mater Sci, 1995; 30: 6223
[8] Nolfi F V, Shewman P G, Foster J S. Trans Metall Soc AIME, 1969; 245: 1427
[9] Kop T A, Van Leeuwen Y, Sietsma J, van der Zwaag S. ISIJ Int, 2000; 7: 713
[10] Wu R H, Ruan X Y, Zhang H B, Hsu T Y. J Mater Sci Technol, 2004; 20: 561
[11] Enomoto M. Acta Mater, 1987; 35: 935
[12] Enomoto M. Acta Mater, 1987; 35: 947
[13] Li Z D, Yang Z G, Liu Z Y, Wang Q C. J Iron Steel Res Int, 2007; 14(suppl1): 306
[14] Hillert M. Metall Trans, 1975; 6A: 5
[15] Trivedi R, Pound G M. J Appl Phys, 1967; 38: 3572
[16] Kinsman K R, Eichen E, Aaronson H I. Metall Trans, 1975; 6A: 303

[1] 武慧东,张弛,柳文波,杨志刚. 考虑位错相互作用的混合控制模型下先共析铁素体生长动力学模拟[J]. 金属学报, 2015, 51(9): 1136-1144.
[2] 马文婧,柯常波,周敏波,梁水保,张新平. Sn/Cu互连体系界面和金属间化合物层Kirkendall空洞演化和生长动力学的晶体相场法模拟*[J]. 金属学报, 2015, 51(7): 873-882.
[3] 王蕾,唐荻,宋勇. 扩散过程控制下的奥氏体连续冷却转变*[J]. 金属学报, 2015, 51(11): 1341-1348.
[4] 柯常波, 周敏波, 张新平. Sn/Cu互连体系界面金属间化合物Cu6Sn5演化和生长动力学的相场法模拟*[J]. 金属学报, 2014, 50(3): 294-304.
[5] 周敏波,马骁,张新平. BGA结构Sn-3.0Ag-0.5Cu/Cu焊点低温回流时界面反应和IMC生长行为[J]. 金属学报, 2013, 49(3): 341-350.
[6] 夏苑 杨志刚 李昭东 张玉朵 张弛. 热变形对Fe-0.2C-2Mn合金γ→α转变动力学的影响及理论探讨[J]. 金属学报, 2012, 48(3): 271-276.
[7] 柯常波 马骁 张新平. 孔隙对NiTi形状记忆合金中B2-R相变影响的相场模拟[J]. 金属学报, 2011, 47(2): 129-139.
[8] 张寒 白秉哲. Mn-Si-Cr系中碳钢在过冷奥氏体状态下变形时的显微组织演变[J]. 金属学报, 2010, 46(1): 47-51.
[9] 柯常波 马骁 张新平. NiTi形状记忆合金中共格Ni4Ti3沉淀相生长动力学行为的相场法模拟[J]. 金属学报, 2010, 46(1): 84-90.
[10] 王勇围 许峰云 徐雪霞 白秉哲. 低碳Mn--Si钢中粒状组织转变研究[J]. 金属学报, 2009, 45(5): 559-565.
[11] 王启超; 杨志刚; 张弛 . 强磁场下“链状铁素体”组织形成的一种理论解释[J]. 金属学报, 2008, 44(6): 708-712 .
[12] 宫明龙; 赵骧; 王守晶; 左良 . 磁场强度对Fe--0.76%C合金先共析铁素体显微组织的影响[J]. 金属学报, 2008, 44(5): 615-618 .
[13] 邓天勇; 许云波; 袁向前; 董毅; 吴迪; 刘相华; 王国栋 . 含Nb低碳钢相变温度Ar3预测模型[J]. 金属学报, 2007, 43(10): 1091-1095 .
[14] 秦高梧;郝士明;宋丹. γ-TiAl基双相合金中初生α_2/γ片层的界面分析[J]. 金属学报, 1998, 34(12): 1279-1283.
[15] 方鸿生;杨志刚;王家军;郑燕康. 贝氏体和马氏体相变及应用的研究[J]. 金属学报, 1996, 32(4): 337-350.