Please wait a minute...
金属学报  2009, Vol. 45 Issue (5): 519-526    
  论文 本期目录 | 过刊浏览 |
双相钢空蚀破坏的力学机制
刘诗汉1;2; 陈大融1
1. 清华大学摩擦学国家重点实验室; 北京 100084
2. 中国人民解放军空军第一航空学院; 信阳 464000
MECHANICS MECHANISM OF DUPLEX STEEL CAVITATION DAMAGE
LIU Shihan 1;2; CHEN Darong1
1. State Key Laboratory of Tribology; Tsinghua University; Beijing 100084
2. The First Aviation College of the Air Force; PLA; Xinyang 464000
引用本文:

刘诗汉 陈大融. 双相钢空蚀破坏的力学机制[J]. 金属学报, 2009, 45(5): 519-526.
, . MECHANICS MECHANISM OF DUPLEX STEEL CAVITATION DAMAGE[J]. Acta Metall Sin, 2009, 45(5): 519-526.

全文: PDF(7812 KB)  
摘要: 

对由铁素体和渗碳体组成的低、中、高碳钢进行振动空蚀实验, 发现它们空蚀破坏的共同特点是铁素体的严重变形和破损. 但由于铁素体的含量及分布形态不同, 材料空蚀破坏的表现形式大不相同: 铁素体含量高的低碳钢以大面积均匀塑性变形为主; 铁素体含量与珠光体含量大致相等并呈网状分布的中碳(亚共析)钢是由于铁素体隆起脱落而破坏; 以珠光体为主的高碳钢是由于铁素体从渗碳体的夹缝中向外挤出、两相分离而破坏. 微射流冲击形成的应力波使低强度相屈服是造成上述破坏的原因.

关键词 双相钢 空蚀 应力波    
Abstract

Cavitation erosion of materials is mainly caused by the impact of strong pressure pulses and high speed micro--jets, which is formed at the end of bubble collapse. Its mechanisms have been intensively studied based on cavitation tests of heterogeneous materials. Generally speaking, the metallic phase, which is softer and has lower yield limit than the other in a material, is damaged first. However, a metallic phase may perform distinctively in different materials. Satisfactory explanation of this phenomenon is far from being achieved and further studies are necessary. 
        The present work is devoted to the mechanical effect of the impact of the cavitation erosion on duplex steels. Vibration cavitation tests were conducted to mild, medium and high carbon steels which are composed of ferrite and cementite. Mass losses of materials during tests were recorded. Investigations were made on the variation of the microstructure and morphology of specimen surfaces by scanning electronic microscope (SEM) and surface profilometer (SP), as well as the peak strength of binding energy of elements by X--ray photo electron spectroscopy (XPS). It was found that the cavitation damage of all the materials tested is characterized by the serious deformation and fracture of the ferrite phase in them. But the appearance of cavitation surfaces differs from each other because the volume (or mass) fraction and distribution of ferrite are different. Mild carbon steel with dominating integral phase of ferrite deforms uniformly. Medium (hypoeutectoid) steel contains approximately the same fraction of reticulated ferrite as that of pearlite (composed of alternating lamellae of ferrite and cementite). Its deformation mainly occurring in ferrite phase makes the reticulated ferrite bulged up and spalled off the surface gradually. High carbon steel mainly composed of pearlite is damaged because the lamellar ferrite is expelled out and splitting occurrs at the phase boundaries between ferrite and cementite. Analysis with the application of stress wave theory shows that the particular patters of damage of these materials are contributed to the yield of lower strength phase caused by compression stress waves produced by the impact of micro--jets.

Key wordsduplex steel    cavitation erosion    stress wave
收稿日期: 2008-10-15     
ZTFLH: 

TG142.7

 
基金资助:

国家重点基础研究发展计划项目2007CB707702和摩擦学国家重点 实验室自主课题(重点项目)资助

作者简介: 刘诗汉, 男, 1965年生, 副教授

[1] Huang J T. Theory and Application of Cavitation and Cavitation Erosion. Beijing: Tsinghua University Press, 1991: 113
(黄继汤. 空化与空蚀的原理及应用. 北京: 清华大学出版社, 1991: 113)
[2] Tomita Y. Shock Wave Science and Teschnology Reference Library. Heidelberg: Springer, 2007: 37
[3] Berchiche N, Franc J P, Michel J M. J Fluids Eng, 2002; 124: 601
[4] Okada T, Iwai Y, Hattori S, Tanimura N.Wear, 1995; 184:231
[5] Bedkowsi W, Gaisiak G, Lachowicz C. Wear, 1999; 230:201
[6] Paulo V M, Roseana E T. Mater Charact, 1998; 41: 193
[7] Jiang S L, Zheng Y G, Yao Z M. Corros Sci, 2006; 48:2614
[8] Liu W, Zheng Y G, Yao Z M, Wu X Q, Ke W. Acta Metall Sin, 2001; 37: 197
(柳 伟, 郑玉贵, 姚治铭, 吴欣强, 柯 伟. 金属学报, 2001; 37: 197)
[9] Luo S Z, Jing H M, Zheng Y G, Yao Z M, Ke W. J ChinSoc Corros Prot, 2003; 23: 206
(骆素珍, 敬和民, 郑玉贵, 姚治铭, 柯 伟. 中国腐蚀与防护学报, 2003; 23: 206)
[10] Wang Z Y, Chen H P, Xu Y G, Zhu J H. J Xi’an JiaotongUniv, 2002; 36: 744
(王再友, 陈黄浦, 徐英鸽, 朱金华. 西安交通大学学报, 2002; 36: 744)
[11] Liu W, Zheng Y G, Liu C S, Yao Z M, Ke W. Acta Metall Sin, 2003; 39: 85
(柳伟, 郑玉贵, 刘常升, 姚治铭, 柯伟. 金属学报, 2003; 39: 85)
[12] Luo S Z, Jing H M, Zheng Y G, Yao Z M, Ke W. J ChinSoc Corros Prot, 2003; 23: 276
(骆素珍, 敬和民, 郑玉贵, 姚治铭, 柯伟. 中国腐蚀与防护学报, 2003; 23: 276)
[13] Luo S Z, Zheng Y G, Jiang S L, Yao Z M, Ke W. CorrosSci Prot Technol, 2004; 16: 352
(骆素珍, 郑玉贵, 蒋胜利, 姚治铭, 柯 伟. 腐蚀科学与防护技术, 2004; 16: 352)
[14] Ren Y S, Wang Y M, Liu J Y, Qu J X. Met Heat Process,2003; 28(8): 20
(任玉锁, 王义民, 刘俊英, 曲敬信. 金属热处理, 2003; 28(8): 20)
[15] Chen H S, Liu S H, Wang J D, Chen D R. J Appl Phys,2007; 101: 103510
[16] ASTM G32–92, Standard Method of Vibratory Cavitation Erosion Test. Annual Book of ASTM Standards, Vol.03.02, Philadelphia, PA: ASTM, 1995
[17] Chen H S, Li J, Chen D R, Wang J D. Wear, 2008; 265:692
[18] Xue W, Chen Z Y. Mater Mech Eng, 2005; 29(2): 59
(薛伟, 陈昭运. 机械工程材料, 2005; 29(2): 59)
[19] Meyers M A, translated by Zhang Q M, Liu Y, Huang F L,Lu Z J. Dynamic Behavior of Materials. Beijing: National Defense Industry Press, 2006: 16
(Meyers M A著, 张庆明, 刘 彦, 黄风雷, 吕中杰译. 材料的动力学行为. 北京: 国防工业出版社, 2006: 16)

[1] 赵亚峰, 刘苏杰, 陈云, 马会, 马广财, 郭翼. 铁素体-贝氏体双相钢韧性断裂过程中的夹杂物临界尺寸及孔洞生长[J]. 金属学报, 2023, 59(5): 611-622.
[2] 储双杰, 毛博, 胡广魁. 汽车用先进高强度冷轧双相钢的显微组织调控和强韧化机理[J]. 金属学报, 2022, 58(4): 551-566.
[3] 李秀程,孙明煜,赵靖霄,王学林,尚成嘉. 铁素体-贝氏体/马氏体双相钢中界面的定量化晶体学表征[J]. 金属学报, 2020, 56(4): 653-660.
[4] 刘海霞, 陈金豪, 陈杰, 刘光磊. NaCl溶液腐蚀后304不锈钢的射流空蚀特征[J]. 金属学报, 2020, 56(10): 1377-1385.
[5] 乔岩欣,王硕,刘彬,郑玉贵,李花兵,姜周华. 新型高氮钢的腐蚀和空蚀交互作用研究*[J]. 金属学报, 2016, 52(2): 233-240.
[6] 尹炎祺,伍翠兰,谢盼,朱恺,田松栗,韩梅,陈江华. 冷轧及退火制备的超细晶粒双相Mn12Ni2MoTi(Al)钢*[J]. 金属学报, 2016, 52(12): 1527-1535.
[7] 邓洁,马佳伟,许以阳,沈耀. 马氏体的分布对双相钢微观变形行为和力学性能的影响[J]. 金属学报, 2015, 51(9): 1092-1100.
[8] 董丹阳,刘杨,王磊,苏亮进. 应变速率对DP780钢动态拉伸变形行为的影响[J]. 金属学报, 2013, 49(2): 159-166.
[9] 董丹阳, 刘杨, 王磊, 杨玉玲, 李金凤, 金梦梦. 应变速率对DP780钢激光焊接接头动态变形行为的影响[J]. 金属学报, 2013, 49(12): 1493-1500.
[10] 聂文金 尚成嘉 关海龙 张晓兵 陈少慧. 铁素体/贝氏体(F/B)双相钢组织调控及其抗变形行为分析[J]. 金属学报, 2012, 48(3): 298-306.
[11] 冯爱新 聂贵锋 薛伟 曹宇鹏 徐晓翔 李彬 施芬. 2024铝合金薄板激光冲击波加载的实验研究[J]. 金属学报, 2012, 48(2): 205-210.
[12] 代启锋 宋仁伯 范午言 郭志飞 关小霞. DP1180双相钢在高应变速率变形条件下应变硬化行为及机制[J]. 金属学报, 2012, 48(10): 1160-1165.
[13] 徐海卫; 杨王玥; 孙祖庆 . 基于动态相变的细晶双相低碳钢组织控制[J]. 金属学报, 2006, 42(10): 1101-1108 .
[14] 雍兴跃; 刘景军; 林玉珍 . 金属在流动氯化物体系中流动腐蚀的EIS研究[J]. 金属学报, 2005, 41(8): 871-875 .
[15] 姜胜利; 郑玉贵; 姚治铭 . 20SiMn低合金钢在不同砂粒粒径的多相流中的损伤行为[J]. 金属学报, 2004, 40(2): 163-167 .