Please wait a minute...
金属学报  2009, Vol. 45 Issue (12): 1473-1478    
  论文 本期目录 | 过刊浏览 |
粘结巨磁致伸缩颗粒复合材料的磁致伸缩性能及涡流损耗
贾傲;张天丽;孟皓;蒋成保
北京航空航天大学材料科学与工程学院; 北京 100191
MAGNETOSTRICTION AND EDDY CURRENT LOSS OF BONDED GIANT MAGNETOSTRICTIVE PARTICLE COMPOSITES
JIA Ao; ZHANG Tianli; MENG Hao; JIANG Chengbao
School of Materials Science and Engineering; Beihang University; Beijing 100191
引用本文:

贾傲 张天丽 孟皓 蒋成保. 粘结巨磁致伸缩颗粒复合材料的磁致伸缩性能及涡流损耗[J]. 金属学报, 2009, 45(12): 1473-1478.
, , , . MAGNETOSTRICTION AND EDDY CURRENT LOSS OF BONDED GIANT MAGNETOSTRICTIVE PARTICLE COMPOSITES[J]. Acta Metall Sin, 2009, 45(12): 1473-1478.

全文: PDF(1483 KB)  
摘要: 

采用模压成型、室温固化的粘结方法制备了各向同性的粘结TbDyFe巨磁致伸缩颗粒复合材料. 对其组织形貌、磁致伸缩性能、动态特性、涡流损耗特性和电阻率进行了测试和分析. 结果表明, TbDyFe合金颗粒尺寸为74-150 μm以及150-300 μm时, 树脂与颗粒结合相对紧密, 浸润性良好; 而颗粒尺寸为0-74 μm时, 出现明显的不良浸润和颗粒团聚现象. TbDyFe合金的颗粒尺寸和质量分数对材料的磁致伸缩性能影响较大, TbDyFe合金颗粒尺寸为74-150  μm, 质量分数为90%时, 该复合材料磁致伸缩率在400 kA/m磁场下可达723.0×10-6. 相比于取向生长的TbDyFe合金, 粘结巨磁致伸缩颗粒复合材料的电阻率提高了5个数量级, 在32.7 mT偏置磁场下声速降低1/3以上, 涡流损耗因子在2×105 Hz条件下的降幅超过90%, 在1×107 Hz的高频条件下仍可降低近50%.

关键词 TbDyFe合金 磁致伸缩 涡流损耗    
Abstract

Rare–earth–iron alloy TbDyFe is an advanced magnetostrictive material to date because of its giant magnetostriction, high energy density, and rapid response at room temperature and low magnetic field. Due to the high sound velocity and eddy current losses of TbDyFe alloy under high frequency, its applications are limited. The bonded giant magnetostrictive materials are expected to exhibit high resistivity to reduce the eddy current loss. In the present study, the bonded giant magnetostrictive materials were prepared by mixing TbDyFe alloy particles with epoxy resin. The
electrical resistivity, impedance and eddy current losses of the bonded materials have been primarily analyzed. The optimized magnetostriction is observed to be 723.0×10−6 at magnetic field of 400 kA/m in the bonded material witparticle mass fraction of 90% and particle size of 74—150 μm. TbDyFe particle size and mass fraction show a significant influence on the magnetostriction of the bonded mateials. Compared to the advanced oriented TbDyFe allo, the electrical resistivity is 5 orders of magnitude greater, and the sound velocity is 1/3 lower under the applied magnetic field of 32.7 mT, ad the eddy current loss factor is reduced by 90% at 2×105 Hz, and by nearly 50% at 1×17 Hz.

Key wordsTbDyFe alloy    magnetostriction    eddy current loss
收稿日期: 2009-05-26     
ZTFLH: 

TG132.2+7

 
基金资助:

国家自然科学基金项目60534020和高等学校博士学科点专项科研基金项目20080061026资助

作者简介: 贾傲, 男, 1984年, 硕士生

[1] Jiang C B, Zhao Y, Xu H B. Acta Metall Sin, 2004; 40: 373
(蒋成保, 赵岩, 徐惠彬. 金属学报, 2004; 40: 373)
[2] Verhoeven J D, Gibson E D, McMaster O D, Ostenson J E. Metall Mater Trans, 1990; 21A: 2249
[3] Jiang C B, Zhao Y, Xu H B. Acta Metall Sin, 2004; 40: 378
(蒋成保, 赵岩, 徐惠彬. 金属学报, 2004; 40: 378)
[4] Sandlund L, Fahlander M, Cedell T, Clark A E, Restorff J B, Wun–Fogle M. J Appl Phys, 1994; 75: 5656
[5] Nersessian N, Or S W, Carman G P. J Magn Magn Mater, 2003; 263: 101
[6] Altin G, Ho K K, Henry C P, Carman G P. J Appl Phys, 2007; 101: 33537
[7] Kwon O Y, Kim H Y, Hong S H. J Appl Phys, 2006; 100:123905
[8] Duenas T A, Carman G P. J Appl Phys, 2000; 87: 4696
[9] McKnight G P, Carman G P. Smart Struct Mater, 2001; 4333: 178
[10] Or S W, Nersessian N, McKnight G P, Carman G P. J Appl Phys, 2003; 93: 8510
[11] Pasquale M, Lim S H. J Appl Phys, 1999; 85: 4633
[12] Jiang M H, Gu Z F, Cheng G. Acta Mater Comp Sin, 2008; 25: 73
(江民红, 顾正飞, 成钢. 复合材料学报, 2008; 25: 73)
[13] Hudson J, Busbridge S C, Piercy A R. Sens Actuators, 2000; 81A: 294
[14] Zhu X X, Zhang T L, Jiang C B. Acta Metall Sin, 2009; 45: 455
(朱小溪, 张天丽, 蒋成保. 金属学报, 2009; 45: 455)
[15] Bai X B, Jiang C B, Gong S K. Chin J Mater Res, 2006; 20: 607
(白夏冰, 蒋成保, 宫声凯. 材料研究学报, 2006; 20: 607)
[16] Bai X B, a T Y, Jiang C B. Acta Metall Sin, 2008; 44: 1231
(白夏冰, 马天宇, 蒋成保. 金属学报, 2008; 44: 1231)
[17] Zhou S Z, Zhao Q. Chin J Mater Res, 2001; 15: 135
(周寿增, 赵青. 材料研究学报, 2001; 15: 135)
[18] McKnight G P. PhD thesis, University of California, Los Angeles, 2002
[19] Mei W Y. Measurement of Dynamic Magnetic Property. Beijing: China Machine Press, 1985: 199
(梅文余. 动态磁性能测试. 北京: 机械工业出版社, 1985: 199)

[1] 储双杰,杨勇杰,和正华,沙玉辉,左良. 基于磁畴结构交互作用的激光刻痕取向硅钢磁致伸缩系数计算[J]. 金属学报, 2019, 55(3): 362-368.
[2] 付全,沙玉辉,和正华,雷蕃,张芳,左良. Fe81Ga19二元合金薄板的再结晶织构与磁致伸缩性能[J]. 金属学报, 2017, 53(1): 90-96.
[3] 刘印,刘铁,王强,王慧敏,王丽,赫冀成. 强磁场热处理对TbFe2和Tb0.27Dy0.73Fe1.95合金晶体取向、微观形貌和磁致伸缩性能的影响[J]. 金属学报, 2013, 49(9): 1148-1152.
[4] 姚占全,赵增祺,江丽萍,郝宏波,吴双霞,张光睿,杨建东. 稀土Ce添加对Fe83Ga17合金微结构和磁致伸缩性能的影响[J]. 金属学报, 2013, 49(1): 87-91.
[5] 李晓诚 丁雨田 胡勇. Tb0.3Dy0.7Fe1.95-xTix (x=0, 0.03, 0.06, 0.09) 合金的微观组织与磁致伸缩性能[J]. 金属学报, 2012, 48(1): 11-15.
[6] 陈立彪 朱小溪 李川 刘敬华 蒋成保 徐惠彬. Fe81Ga19合金<001>取向单晶生长及磁致伸缩性能[J]. 金属学报, 2011, 47(2): 169-172.
[7] 崔跃 蒋成保 徐惠彬. Tb-Dy-Fe-Co合金本征磁致伸缩性能[J]. 金属学报, 2011, 47(2): 214-218.
[8] 张昌盛 马天宇 严密 裴永茂 高旭 . <110>取向Tb0.36Dy0.64(Fe0.85Co0.15)2合金的磁机械阻尼特性[J]. 金属学报, 2009, 45(6): 749-753.
[9] 朱小溪 张天丽 蒋成保. Fe72.5Ga27.5磁致伸缩合金动态机电耦合系数K33[J]. 金属学报, 2009, 45(4): 455-459.
[10] 高学绪 李纪恒 朱洁 包小倩 贾俊成 张茂才 . 气体雾化制备Fe-Ga合金粉末的微结构及磁致伸缩性能[J]. 金属学报, 2009, 45(10): 1267-1271.
[11] 李纪恒; 高学绪; 朱洁; 张茂才; 何承先 . 轧制Fe-Ga合金的织构及磁致伸缩[J]. 金属学报, 2008, 44(9): 1031-1034 .
[12] 章愫; 刘敬华; 蒋成保; 徐惠彬 . 熔体快淬法制备Fe81Ga19磁致伸缩合金[J]. 金属学报, 2008, 44(3): 361-364 .
[13] 许云伟; 马天宇; 张晶晶; 严密 . 反铁磁Fe1-xMnx(0.30≤x≥0.55) 合金的磁致伸缩[J]. 金属学报, 2008, 44(10): 1235-1237 .
[14] 白夏冰; 马天宇; 蒋成保 . <110>取向Tb0.36Dy0.64(Fe0.85Co0.15)2合金的磁机械耦合系数[J]. 金属学报, 2008, 44(10): 1231-1234 .
[15] 马天宇 ; 严密; 王庆伟 . <110>取向Tb--Dy--Fe--Co 合金棒的磁致伸缩均匀性[J]. 金属学报, 2007, 43(7): 688-692 .